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1 Tools for Success in ASTR 1120G

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject they
are looking at, and submit their results for publication. Along the way astronomers use
all of the mathematical techniques and physics necessary to understand the objects they
examine. Thus, just like any other science, a large number of mathematical tools and con-
cepts are needed to perform astronomical research. In today’s introductory lab, you will
review and learn some of the most basic concepts necessary to enable you to successfully
complete the various laboratory exercises you will encounter during this semester. When
needed, the weekly laboratory exercise you are performing will refer back to the examples in
this introduction—so keep the completed examples you will do today with you at all times
during the semester to use as a reference when you run into these exercises later this semester
(in fact, on some occasions your TA might have you redo one of the sections of this lab for
review purposes).

1.2 A Note About Ratios

You will encounter ratios in many of your classes, cooking, recipes, money transactions,
etc.! A ratio simply indicates how many times one number contains the other number. For
example, if I had a bowl of fruit with 8 apples and 6 bananas, the ratio of apples to bananas
would be eight to six (or we could say 8:6. Which is equal to 4:3). We know this bowl of
fruit has 14 total fruit in it. So we know that there is 8 apples out of the total of 14 fruit,
or a ratio of 8:14 (which is equal to a ratio of 4:7. Which we are able to get by noting that
both “8” and “14” have something in common! They can be divided by 2!).

Additionally, if I take the ratio 8:14 and I divide 8 by 14 I would get 0.57 (or 57%).
From knowing the ratio of apples to total number of fruit in the bowl, I know there are 57%
apples. Similarly, we said that the ratio of 8:14 was similar to 4:7. If we did the same thing
by dividing 4 by 7, we would also get 0.57 (or 57%)! Which makes sense since we said they
were equal!!

In fact, a ratio may be considered as an ordered pair of numbers, or a fraction! The first
number in a ratio would be the numerator of a fraction. And the second number in the ratio
would be the denominator.

Ratios may be quantities of any kind! They can be counts of people or objects! These
ratios can be lengths, weights, time, etc.

Practice with ratios:
Remember, a ratio compares two different quantities. Those two quantities can be any-

thing. In your astronomy labs they will most likely be comparing two distances, lengths, or
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time. The order of a ratio matters!

1. If you drive for 60 miles in 2 hours, how fast were you driving? Show how you figured
this out! (1 points)

This is a common use of ratios (and proportions). This is comparing the number of
miles (60) to the number of hours it took to drive (2). So the ratio is 60:2 (which we
would verbal express as “60 miles in 2 hours”).

2. Now let’s say you rode your bike at a rate of 10 miles per hour for 4 hours. How many
miles did you travel? Show your work with how you solved it. (2 points)

We know our ratio is 10:1 (10 miles per 1 hour). So that tells us that in 4 hours, we
will have traveled a total of 40 miles.

3. Looking ahead to the scale model lab, we will place all the planets on the Football
field with Pluto at the 100 yard line. One of the instructions asks you to figure out
how many yards there are per AU based on the fact that Pluto is at the 100 yard line
(an AU is an Astronomical Unit which is the average distance between the sun and
Earth). We know that Pluto is 40 AU away in space. So if we were to “scale” down
the distance to yards on a football field, we know that there would be a ratio of 100
yards to AU. Similar to the miles per hour example above, how many yards per AU is
there in a “Scale Model” of the solar system? (2 points)
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1.3 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is based on
powers of 10, and has a set of measurement units analogous to the English system we use
in everyday life here in the US. In the metric system the main unit of length (or distance)
is the meter, the unit of mass is the kilogram, and the unit of liquid volume is the liter. A
meter is approximately 40 inches, or about 4” longer than the yard. Thus, 100 meters is
about 111 yards. A liter is slightly larger than a quart (1.0 liter = 1.101 qt). On the Earth’s
surface, a kilogram = 2.2 pounds.

As you have almost certainly learned, the metric system uses prefixes to change scale. For
example, one thousand meters is one “kilometer.” One thousandth of a meter is a “millime-
ter.” The prefixes that you will encounter in this class are listed in Table 1.3.

Table 1.1: Metric System Prefixes
Prefix Name Prefix Symbol Prefix Value

Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro µ 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

In the metric system, 3,600 meters is equal to 3.6 kilometers; 0.8 meter is equal to 80
centimeters, which in turn equals 800 millimeters, etc. In the lab exercises this semester we
will encounter a large range in sizes and distances. For example, you will measure the sizes of
some objects/things in class in millimeters, talk about the wavelength of light in nanometers,
and measure the sizes of features on planets that are larger than 1,000 kilometers.

1.4 Beyond the Metric System

When we talk about the sizes or distances to objects beyond the surface of the Earth, we
begin to encounter very large numbers. For example, the average distance from the Earth
to the Moon is 384,000,000 meters or 384,000 kilometers (km). The distances found in
astronomy are usually so large that we have to switch to a unit of measurement that is much
larger than the meter, or even the kilometer. In and around the solar system, astronomers
use “Astronomical Units.” An Astronomical Unit is the mean (average) distance between
the Earth and the Sun. One Astronomical Unit (AU) = 149,600,000 km. For example,
Jupiter is about 5 AU from the Sun, while Pluto’s average distance from the Sun is 39 AU.
With this change in units, it is easy to talk about the distance to other planets. It is more
convenient to say that Saturn is 9.54 AU away than it is to say that Saturn is 1,427,184,000
km from Earth.
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1.5 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is something
you must master during this semester. You already do this in your everyday life whether
you know it or not (for example, if you travel to Mexico and you want to pay for a Coke in
pesos), so do not panic! Let’s look at some examples (2 points each):

1. Convert 34 meters into centimeters:

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:

3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. In August 2003, Mars made its closest approach to Earth for the next 50,000 years.
At that time, it was only about .373 AU away from Earth. How many km is this?

1.5.1 Map Exercises

One technique that you will use this semester involves measuring a photograph or image
with a ruler, and converting the measured number into a real unit of size (or distance). One
example of this technique is reading a road map. Figure 1.1 shows a map of the state of
New Mexico. Down at the bottom left hand corner of the map is a scale in both miles and
kilometers.

Use a ruler to determine (2 points each):

6. How many kilometers is it from Las Cruces to Albuquerque?
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Figure 1.1: Map of New Mexico.
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7. What is the distance in miles from the border with Arizona to the border with Texas
if you were to drive along I-40?

8. If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?

9. If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?

1.6 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square roots. Let
us briefly review what is meant by such terms as squares, cubes, square roots and exponents.
The square of a number is simply that number times itself: 3 × 3 = 32 = 9. The exponent
is the little number “2” above the three. 52 = 5 × 5 = 25. The exponent tells you how
many times to multiply that number by itself: 84 = 8 × 8 × 8 × 8 = 4096. The square of
a number simply means the exponent is 2 (three squared = 32), and the cube of a number
means the exponent is three (four cubed = 43). Here are some examples:

• 72 = 7 × 7 = 49

• 75 = 7 × 7 × 7 × 7 × 7 = 16,807

• The cube of 9 (or “9 cubed”) = 93 = 9 × 9 × 9 = 729

• The exponent of 1216 is 16

• 2.563 = 2.56 × 2.56 × 2.56 = 16.777

Your turn (2 points each):

10. 63 =
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11. 44 =

12. 3.12 =

The concept of a square root is fairly easy to understand, but is much harder to calculate (we
usually have to use a calculator). The square root of a number is that number whose square
is the number: the square root of 4 = 2 because 2 × 2 = 4. The square root of 9 is 3 (9 =
3 × 3). The mathematical operation of a square root is usually represented by the symbol
“
√

”, as in
√

9 = 3. But mathematicians also represent square roots using a fractional
exponent of one half: 91/2 = 3. Likewise, the cube root of a number is represented as 271/3

= 3 (3 × 3 × 3 = 27). The fourth root is written as 161/4 (= 2), and so on. Here are some
example problems:

•
√

100 = 10

• 10.53 = 10.5 × 10.5 × 10.5 = 1157.625

• Verify that the square root of 17 (
√

17= 171/2) = 4.123

1.7 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of subatomic
particles, to the size of the entire universe. You are certainly comfortable with numbers
like ten, one hundred, three thousand, ten million, a billion, or even a trillion. But what
about a number like one million trillion? Or, four thousand one hundred and fifty six million
billion? Such numbers are too cumbersome to handle with words. Scientists use something
called “Scientific Notation” as a short hand method to represent very large and very small
numbers. The system of scientific notation is based on the number 10. For example, the
number 100 = 10 × 10 = 102. In scientific notation the number 100 is written as 1.0 × 102.
Here are some additional examples:

• Ten = 10 = 1 × 10 = 1.0 × 101

• One hundred = 100 = 10 × 10 = 102 = 1.0 × 102

• One thousand = 1,000 = 10 × 10 × 10 = 103 = 1.0 × 103

• One million = 1,000,000 = 10 × 10 × 10 × 10 × 10 × 10 = 106 = 1.0 ×106
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Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific notation? 6,563
= 6563.0 = 6.563 × 103. To figure out the exponent on the power of ten, we simply count
the numbers to the left of the decimal point, but do not include the left-most number. Here
are some more examples:

• 1,216 = 1216.0 = 1.216 × 103

• 8,735,000 = 8735000.0 = 8.735000 × 106

• 1,345,999,123,456 = 1345999123456.0 = 1.345999123456 × 1012 ≈ 1.346 × 1012

Note that in the last example above, we were able to eliminate a lot of the “unnecessary”
digits in that very large number. While 1.345999123456 × 1012 is technically correct as the
scientific notation representation of the number 1,345,999,123,456, we do not need to keep
all of the digits to the right of the decimal place. We can keep just a few, and approximate
that number as 1.346 × 1012.

Your turn! Work the following examples (2 points each):

13. 121 = 121.0 =

14. 735,000 =

15. 999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First, lets look at
powers of 10, but this time in fractional form. The number 0.1 = 1

10
. In scientific notation

we would write this as 1 × 10−1. The negative number in the exponent is the way we write
the fraction 1

10
. How about 0.001? We can rewrite 0.001 as 1

10
× 1

10
× 1

10
= 0.001 = 1 ×

10−3. Do you see where the exponent comes from? Starting at the decimal point, we simply
count over to the right of the first digit that isn’t zero to determine the exponent. Here are
some examples:

• 0.121 = 1.21 × 10−1

• 0.000735 = 7.35 × 10−4
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• 0.0000099902 = 9.9902 × 10−6

Your turn (2 points each):

16. 0.0121 =

17. 0.0000735 =

18. 0.0000000999 =

19. −0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in scientific
notation. It is kind of silly to write the number 23.7 as 2.37 × 101, or 0.5 as 5.0 × 10−1. You
use scientific notation when it is a more compact way to write a number to ensure that its
value is quickly and easily communicated to someone else. For example, if you tell someone
the answer for some measurement is 0.0033 meter, the person receiving that information
has to count over the zeros to figure out what that means. It is better to say that the
measurement was 3.3 × 10−3 meter. But telling someone the answer is 215 kg, is much
easier than saying 2.15 × 102 kg. It is common practice that numbers bigger than 10,000 or
smaller than 0.01 are best written in scientific notation.

1.8 Calculator Issues

Since you will be using calculators in nearly all of the labs this semester, you should become
familiar with how to use them for functions beyond simple arithmetic.

1.8.1 Scientific Notation on a Calculator

Scientific notation on a calculator is usually designated with an “E.” For example, if you see
the number 8.778046E11 on your calculator, this is the same as the number 8.778046 ×1011.
Similarly, 1.4672E-05 is equivalent to 1.4672 ×10−5.

Entering numbers in scientific notation into your calculator depends on layout of your cal-
culator; we cannot tell you which buttons to push without seeing your specific calculator.
However, the “E” button described above is often used, so to enter 6.589 ×107, you may
need to type 6.589 “E” 7.

Verify that you can enter the following numbers into your calculator:

• 7.99921 ×1021
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• 2.2951324 ×10−6

1.8.2 Order of Operations

When performing a complex calculation, the order of operations is extremely important.
There are several rules that need to be followed:

i. Calculations must be done from left to right.

ii. Calculations in brackets (parenthesis) are done first. When you have more than one
set of brackets, do the inner brackets first.

iii. Exponents (or radicals) must be done next.

iv. Multiply and divide in the order the operations occur.

v. Add and subtract in the order the operations occur.

If you are using a calculator to enter a long equation, when in doubt as to whether the
calculator will perform operations in the correct order, apply parentheses.

Use your calculator to perform the following calculations (2 points each):

20. (7+34)
(2+23)

=

21. (42 + 5) − 3 =

22. 20 ÷ (12 − 2) × 32 − 2 =

1.9 Graphing and/or Plotting

Now we want to discuss graphing data. You probably learned about making graphs in high
school. Astronomers frequently use graphs to plot data. You have probably seen all sorts
of graphs, such as the plot of the performance of the stock market shown in Fig. 1.2. A
plot like this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market. Each
place on the curve that shows the performance of the stock market is represented by two
numbers, the date (x axis), and the value of the index (y axis). For example, on May 10 of
2004, the Dow Jones index stood at 10,000.

Plots like this require two data points to represent each point on the curve or in the plot.
For comparing the stock market you need to plot the value of the stocks versus the date. We
call data of this type an “ordered pair.” Each data point requires a value for x (the date)
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Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003 to July
2004).

Table 1.2: Temperature vs. Altitude
Altitude Temperature

(feet) oF
0 59.0

2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

and y (the value of the Dow Jones index).

Table 1.2 contains data showing how the temperature changes with altitude near the Earth’s
surface. As you climb in altitude, the temperature goes down (this is why high mountains
can have snow on them year round, even though they are located in warm areas). The data
points in this table are plotted in Figure 1.3.

1.9.1 The Mechanics of Plotting

When you are asked to plot some data, there are several things to keep in mind.

First of all, the plot axes must be labeled. This will be emphasized throughout the
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Figure 1.3: The change in temperature as you climb in altitude with the data from Table 1.2.
At sea level (0 ft altitude) the surface temperature is 59oF. As you go higher in altitude, the
temperature goes down.

semester. In order to quickly look at a graph and determine what information is being con-
veyed, it is imperative that both the x-axis and y-axis have labels.

Secondly, if you are creating a plot, choose the numerical range for your axes such that the
data fit nicely on the plot. For example, if you were to plot the data shown in Table 1.2, with
altitude on the y-axis, you would want to choose your range of y-values to be something like
0 to 18,000. If, for example, you drew your y-axis going from 0 to 100,000, then all of the
data would be compressed towards the lower portion of the page. It is important to choose
your ranges for the x and y axes so they bracket the data points.

1.9.2 Plotting and Interpreting a Graph

Table 1.3 contains hourly temperature data on January 19, 2006, for two locations: Tucson
and Honolulu.
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Table 1.3: Hourly Temperature Data from 19 January 2006
Time Tucson Temp. Honolulu Temp.

hh:mm oF oF
00:00 49.6 71.1
01:00 47.8 71.1
02:00 46.6 71.1
03:00 45.9 70.0
04:00 45.5 72.0
05:00 45.1 72.0
06:00 46.0 73.0
07:00 45.3 73.0
08:00 45.7 75.0
09:00 46.6 78.1
10:00 51.3 79.0
11:00 56.5 80.1
12:00 59.0 81.0
13:00 60.8 82.0
14:00 60.6 81.0
15:00 61.7 79.0
16:00 61.7 77.0
17:00 61.0 75.0
18:00 59.2 73.0
19:00 55.0 73.0
20:00 53.4 72.0
21:00 51.6 71.1
22:00 49.8 72.0
23:00 48.9 72.0
24:00 47.7 72.0

23. On the blank sheet of graph paper in Figure 1.4, plot the hourly temperatures mea-
sured for Tucson and Honolulu on 19 January 2006. (10 points)

24. Which city had the highest temperature on 19 January 2006? (2 points)

25. Which city had the highest average temperature? (2 points)

26. Which city heated up the fastest in the morning hours? (2 points)

While straight lines and perfect data show up in science from time to time, it is actually
quite rare for real data to fit perfectly on top of a line. One reason for this is that all
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Figure 1.4: Graph paper for plotting the hourly temperatures in Tucson and Honolulu.

measurements have error. So even though there might be a perfect relationship between
x and y, the uncertainty of the measurements introduces small deviations from the line.
In other cases, the data are approximated by a line. This is sometimes called a best-fit
relationship for the data.

1.10 Does it Make Sense?

This is a question that you should be asking yourself after every calculation that you do in
this class!

One of our primary goals this semester is to help you develop intuition about our solar sys-
tem. This includes recognizing if an answer that you get “makes sense.” For example, you
may be told (or you may eventually know) that Mars is 1.5 AU from Earth. You also know
that the Moon is a lot closer to the Earth than Mars is. So if you are asked to calculate the

14



Earth-Moon distance and you get an answer of 4.5 AU, this should alarm you! That would
imply that the Moon is three times farther away from Earth than Mars is! And you know
that’s not right.

Use your intuition to answer the following questions. In addition to just giving your answer,
state why you gave the answer you did. (5 points each)

27. Earth’s diameter is 12,756 km. Jupiter’s diameter is about 11 times this amount.
Which makes more sense: Jupiter’s diameter being 19,084 km or 139,822 km?

28. Sound travels through air at roughly 0.331 kilometers per second. If BX 102 suddenly
exploded, which would make more sense for when people in Mesilla (almost 5 km away)
would hear the blast? About 14.5 seconds later, or about 6.2 minutes later?

29. Water boils at 100 ◦C. Without knowing anything about the planet Pluto other than
the fact that is roughly 40 times farther from the Sun than the Earth is, would you
expect the surface temperature of Pluto to be closer to -100◦ or 50◦?

1.11 Putting it All Together

We have covered a lot of tools that you will need to become familiar with in order to complete
the labs this semester. Now let’s see how these concepts can be used to answer real questions
about our solar system. Remember, ask yourself does this make sense? for each answer
that you get!

30. To travel from Las Cruces to New York City by car, you would drive 3585 km. What
is this distance in AU? (10 points)
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31. The Earth is 4.5 billion years old. The dinosaurs were killed 65 million years ago due
to a giant impact by a comet or asteroid that hit the Earth. If we were to compress the
history of the Earth from 4.5 billion years into one 24-hour day, at what time would
the dinosaurs have been killed? (10 points)

32. When it was launched towards Pluto, the New Horizons spacecraft was traveling at
approximately 20 kilometers per second. How long did it take to reach Jupiter, which
is roughly 4 AU from Earth? [Hint: see the definition of an AU in Section 1.3 of this
lab.] (7 points)
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Name(s):
Date:

2 The Origin of the Seasons

2.1 Introduction

The origin of the science of Astronomy owes much to the need of ancient peoples to have
a practical system that allowed them to predict the seasons. It is critical to plant your
crops at the right time of the year—too early and the seeds may not germinate because it
is too cold, or there is insufficient moisture. Plant too late and it may become too hot and
dry for a sensitive seedling to survive. In ancient Egypt, they needed to wait for the Nile
to flood. The Nile river would flood every July, once the rains began to fall in Central Africa.

Thus, the need to keep track of the annual cycle arose with the development of agri-
culture, and this required an understanding of the motion of objects in the sky. The first
devices used to keep track of the seasons were large stone structures (such as Stonehenge)
that used the positions of the rising Sun or Moon to forecast the coming seasons. The first
recognizable calendars that we know about were developed in Egypt, and appear to date
from about 4,200 BC. Of course, all a calendar does is let you know what time of year it was,
it does not provide you with an understanding of why the seasons occur! The ancient people
had a variety of models for why seasons occurred, but thought that everything, including
the Sun and stars, orbited around the Earth. Today, you will learn the real reason why there
are seasons.

• Goals: To learn why the Earth has seasons.

• Materials: a meter stick, a mounted plastic globe, an elevation angle apparatus, string,
a halogen lamp, and a few other items

2.2 The Seasons

Before we begin today’s lab, let us first talk about the seasons. In New Mexico we have
rather mild Winters, and hot Summers. In the northern parts of the United States, however,
the winters are much colder. In Hawaii, there is very little difference between Winter and
Summer. As you are also aware, during the Winter there are fewer hours of daylight than
in the Summer. In Table 2.1 we have listed seasonal data for various locations around the
world. Included in this table are the average January and July maximum temperatures, the
latitude of each city, and the length of the daylight hours in January and July. We will use
this table in Exercise #2.

In Table 2.1, the “N” following the latitude means the city is in the northern hemisphere
of the Earth (as is all of the United States and Europe) and thus North of the equator. An
“S” following the latitude means that it is in the southern hemisphere, South of the Earth’s

17



Table 2.1: Season Data for Select Cities
City Latitude January Ave. July Ave. January July

(Degrees) Max. Temp. Max. Temp. Daylight Daylight
Hours Hours

Fairbanks, AK 64.8N -2 72 3.7 21.8
Minneapolis, MN 45.0N 22 83 9.0 15.7
Las Cruces, NM 32.5N 57 96 10.1 14.2

Honolulu, HI 21.3N 80 88 11.3 13.6
Quito, Ecuador 0.0 77 77 12.0 12.0

Apia, Samoa 13.8S 80 78 11.1 12.7
Sydney, Australia 33.9S 78 61 14.3 10.3

Ushuaia, Argentina 54.6S 57 39 17.3 7.4

equator. What do you think the latitude of Quito, Ecuador (0.0o) means? Yes, it is right on
the equator. Remember, latitude runs from 0.0o at the equator to ±90o at the poles. If north
of the equator, we say the latitude is XX degrees north (or sometimes “+XX degrees”), and
if south of the equator we say XX degrees south (or “−XX degrees”). We will use these
terms shortly.

Now, if you were to walk into the Mesilla Valley Mall and ask a random stranger “why
do we have seasons”? The most common answer you would get is “because we are closer to
the Sun during Summer, and further from the Sun in Winter”. This answer suggests that
the general public (and most of your classmates) correctly understand that the Earth orbits
the Sun in such a way that at some times of the year it is closer to the Sun than at other
times of the year. As you have (or will) learn in your lecture class, the orbits of all planets
around the Sun are ellipses. As shown in Figure 2.1 an ellipse is sort of like a circle that
has been squashed in one direction. For most of the planets, however, the orbits are only
very slightly elliptical, and closely approximate circles. But let us explore this idea that the
distance from the Sun causes the seasons.

Figure 2.1: An ellipse with the two “foci” identified. The Sun sits at one focus, while the
other focus is empty. The Earth follows an elliptical orbit around the Sun, but not nearly
as exaggerated as that shown here!
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Exercise #1. In Figure 2.1, we show the locations of the two “foci” of an ellipse (foci is
the plural form of focus). We will ignore the mathematical details of what foci are for now,
and simply note that the Sun sits at one focus, while the other focus is empty (see the
Kepler Law lab for more information if you are interested). A planet orbits around the Sun
in an elliptical orbit. So, there are times when the Earth is closest to the Sun
(“perihelion”), and times when it is furthest (“aphelion”). When closest to the Sun, at
perihelion, the distance from the Earth to the Sun is 147,056,800 km (“147 million
kilometers”). At aphelion, the distance from the Earth to the Sun is 152,143,200 km (152
million km).

With the meter stick handy, we are going to examine these distances. Obviously, our
classroom is not big enough to use kilometers or even meters so, like a road map, we will
have to use a reduced scale: 1 cm = 1 million km. Now, stick a piece of tape on the table
and put a mark on it to set the starting point (the location of the Sun!). Carefully measure
out the two distances (along the same direction) and stick down two more pieces of tape,
one at the perihelion distance, one at the aphelion distance (put small dots/marks on the
tape so you can easily see them).

1) Do you think this change in distance is big enough to cause the seasons? Explain your
logic. (3 points)

2) Take the ratio of the aphelion to perihelion distances: . (1 point)

Given that we know objects appear bigger when we are closer to them, let’s take a look at
the two pictures of the Sun you were given as part of the materials for this lab. One image
was taken on January 23rd, 1992, and one was taken on the 21st of July 1992 (as the “date
stamps” on the images show). Using a ruler, carefully measure the diameter of the Sun in
each image:

Sun diameter in January image = mm.

Sun diameter in July image = mm.

3) Take the ratio of bigger diameter / smaller diameter, this = . (1 point)

4) How does this ratio compare to the ratio you calculated in question #2? (2 points)

5) So, if an object appears bigger when we get closer to it, in what month is the Earth
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closest to the Sun? (2 points)

6) At that time of year, what season is it in Las Cruces? What do you conclude about the
statement “the seasons are caused by the changing distance between the Earth and the
Sun”? (4 points)

Exercise #2. Characterizing the nature of the seasons at different locations. For this
exercise, we are going to be exclusively using the data contained in Table 2.1. First, let’s
look at Las Cruces. Note that here in Las Cruces, our latitude is +32.5o. That is we are
about one third of the way from the equator to the pole. In January our average high
temperature is 57oF, and in July it is 96oF. It is hotter in Summer than Winter (duh!).
Note that there are about 10 hours of daylight in January, and about 14 hours of daylight
in July.

7) Thus, for Las Cruces, the Sun is “up” longer in July than in January. Is the same thing
true for all cities with northern latitudes: Yes or No ? (1 point)

Ok, let’s compare Las Cruces with Fairbanks, Alaska. Answer these questions by filling in
the blanks:

8) Fairbanks is the North Pole than Las Cruces. (1 point)

9) In January, there are more daylight hours in . (1 point)

10) In July, there are more daylight hours in . (1 point)

Now let’s compare Las Cruces with Sydney, Australia. Answer these questions by filling in
the blanks:

12) While the latitudes of Las Cruces and Sydney are similar, Las Cruces is
of the Equator, and Sydney is of the Equator. (2 points)

13) In January, there are more daylight hours in . (1 point)

14) In July, there are more daylight hours in . (1 point)

15) Summarizing: During the Wintertime (January) in both Las Cruces and Fairbanks
there are fewer daylight hours, and it is colder. During July, it is warmer in both Fairbanks
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and Las Cruces, and there are more daylight hours. Is this also true for Sydney?:
. (1 point)

16) In fact, it is Wintertime in Sydney during , and Summertime during
. (2 points)

17) From Table 2.1, I conclude that the times of the seasons in the Northern hemisphere
are exactly to those in the Southern hemisphere. (1 point)

From Exercise #2 we learned a few simple truths, but ones that maybe you have never
thought about. As you move away from the equator (either to the north or to the south)
there are several general trends. The first is that as you go closer to the poles it is generally
cooler at all times during the year. The second is that as you get closer to the poles, the
amount of daylight during the Winter decreases, but the reverse is true in the Summer.

The first of these is not always true because the local climate can be moderated by the
proximity to a large body of water, or depend on the elevation. For example, Sydney is
milder than Las Cruces, even though they have similar latitudes: Sydney is on the eastern
coast of Australia (South Pacific ocean), and has a climate like that of San Diego,
California (which has a similar latitude and is on the coast of the North Pacific). Quito,
Ecuador has a mild climate even though it sits right on the equator due to its high
elevation–it is more than 9,000 feet above sea level, similar to the elevation of Cloudcroft,
New Mexico.

The second conclusion (amount of daylight) is always true—as you get closer and closer to
the poles, the amount of daylight during the Winter decreases, while the amount of
daylight during the Summer increases. In fact, for all latitudes north of 66.5o, the Summer
Sun is up all day (24 hrs of daylight, the so called “land of the midnight Sun”) for at least
one day each year, while in the Winter there are times when the Sun never rises! 66.5o is a
special latitude, and is given the name “Arctic Circle”. Note that Fairbanks is very close to
the Arctic Circle, and the Sun is up for just a few hours during the Winter, but is up for
nearly 22 hours during the Summer! The same is true for the southern hemisphere: all
latitudes south of −66.5o experience days with 24 hours of daylight in the Summer, and 24
hours of darkness in the Winter. −66.5o is called the “Antarctic Circle”. But note that the
seasons in the Southern Hemisphere are exactly opposite to those in the North. During
Northern Winter, the North Pole experiences 24 hours of darkness, but the South Pole has
24 hours of daylight.

2.3 The Spinning, Revolving Earth

It is clear from the preceding that your latitude determines both the annual variation in
the amount of daylight, and the time of the year when you experience Spring, Summer,
Autumn and Winter. To truly understand why this occurs requires us to construct a
model. One of the key insights to the nature of the motion of the Earth is shown in the
long exposure photographs of the nighttime sky on the next two pages.
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Figure 2.2: Pointing a camera to the North Star (Polaris, the bright dot near the center)
and exposing for about one hour, the stars appear to move in little arcs. The center of
rotation is called the “North Celestial Pole”, and Polaris is very close to this position.
The dotted/dashed trails in this photograph are the blinking lights of airplanes that passed
through the sky during the exposure.

What is going on in these photos? The easiest explanation is that the Earth is spinning,
and as you keep your camera shutter open, the stars appear to move in “orbits” around the
North Pole. You can duplicate this motion by sitting in a chair that is spinning—the
objects in the room appear to move in circles around you. The further they are from the
“axis of rotation”, the bigger arcs they make, and the faster they move. An object straight
above you, exactly on the axis of rotation of the chair, does not move. As apparent in
Figure 2.3, the “North Star” Polaris is not perfectly on the axis of rotation at the North
Celestial Pole, but it is very close (the fact that there is a bright star near the pole is just
random chance). Polaris has been used as a navigational aid for centuries, as it allows you
to determine the direction of North.

As the second photograph shows, the direction of the spin axis of the Earth does not
change during the year—it stays pointed in the same direction all of the time! If the
Earth’s spin axis moved, the stars would not make perfect circular arcs, but would wander
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Figure 2.3: Here is a composite of many different exposures (each about one hour in length)
of the night sky over Vienna, Austria taken throughout the year (all four seasons). The
images have been composited using a software package like Photoshop to demonstrate what
would be possible if it stayed dark for 24 hrs, and you could actually obtain a 24 hour
exposure (which can only be truly done north of the Arctic circle). Polaris is the smallest
circle at the very center.

around in whatever pattern was being executed by the Earth’s axis.

Now, as shown back in Figure 2.1, we said the Earth orbits (“revolves” around) the Sun on
an ellipse. We could discuss the evidence for this, but to keep this lab brief, we will just
assume this fact. So, now we have two motions: the spinning and revolving of the Earth. It
is the combination of these that actually give rise to the seasons, as you will find out in the
next exercise.

Exercise #3: In this part of the lab, we will be using the mounted plastic globe, a piece
of string, a ruler, and the halogen desklamp. Warning: while the globe used here is
made of fairly inexpensive parts, it is very time consuming to make. Please be
careful with your globe, as the painted surface can be easily scratched. Make
sure that the piece of string you have is long enough to go slightly more than halfway
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around the globe at the equator–if your string is not that long, ask your TA for a longer
piece of string. As you may have guessed, this plastic globe is a model of the Earth. The
spin axis of the Earth is actually tilted with respect to the plane of its orbit by 23.5o.
Set up the experiment in the following way. Place the halogen lamp at one end of the table
(shining towards the closest wall so as to not affect your classmates), and set the globe at a
distance of 1.5 meters from the lamp. After your TA has dimmed the classroom lights,
turn on the halogen lamp to the highest setting (depending on the lamp, there may be a
dim, and a bright setting). Note these lamps get very hot, so be careful. For this lab, we
will define the top of the globe as the Northern hemisphere, and the bottom as the
Southern hemisphere.

First off, it will be helpful to know the length of the entire arc at the 4 latitudes at which
you’ll be measuring later. Using the piece of string, measure the length of the arc at each
latitude and note it below.

Table 2.2: Total Arc Length
Latitude Total Length of Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Experiment #1: For the first experiment, arrange the globe so the axis of the “Earth”is
pointed at a right angle (90◦) to the direction of the “Sun”. Use your best judgement. Now
adjust the height of the desklamp so that the light bulb in the lamp is at the same approxi-
mate height as the equator.

There are several colored lines on the globe that form circles which are concentric with
the axis, and these correspond to certain latitudes. The red line is the equator, the black
line is 45o North, while the two blue lines are the Arctic (top) and Antarctic (bottom) circles.

Note that there is an illuminated half of the globe, and a dark half of the globe. The
line that separates the two is called the “terminator”. It is the location of sunrise or sunset.
Using the piece of string, we want to measure the length of each arc that is in “daylight”,
and the length that is in “night”. This is kind of tricky, and requires a bit of judgement as
to exactly where the terminator is located. So make sure you have a helper to help keep
the string exactly on the line of constant latitude, and get the advice of your lab partners
of where the terminator is (and it is probably best to do this more than once!). Fill in the
following table (4 points):

As you know, the Earth rotates once every 24 hours (= 1 Day). Each of the lines of
constant latitude represents a full circle that contains 360o. But note that these circles get
smaller in radius as you move away from the equator. The circumference of the Earth at the
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Table 2.3: Position #1: Equinox Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

equator is 40,075 km (or 24,901 miles). At a latitude of 45o, the circle of constant latitude
has a circumference of 28,333 km. At the arctic circles, the circle has a circumference of
only 15,979 km. This is simply due to our use of two coordinates (longitude and latitude)
to define a location on a sphere.

Since the Earth is a solid body, all of the points on Earth rotate once every 24 hours.
Therefore, the sum of the daytime and nighttime arcs you measured equals 24 hours! So, fill
in the following table (2 points):

Table 2.4: Position #1: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

18) The caption for Table 2.3 was “Equinox data”. The word Equinox means “equal
nights”, as the length of the nighttime is the same as the daytime. While your numbers in
Table 2.4 may not be exactly perfect, what do you conclude about the length of the nights
and days for all latitudes on Earth in this experiment? Is this result consistent with the
term Equinox? (3 points)

Experiment #2: Now we are going to re-orient the globe so that the (top) polar axis
points exactly away from the Sun and repeat the process of Experiment #1. Fill in the
following two tables (4 points):

19) Compare your results in Table 2.6 for +45o latitude with those for Minneapolis in
Table 2.1. Since Minneapolis is at a latitude of +45o, what season does this orientation of
the globe correspond to? (2 points)
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Table 2.5: Position #2: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Table 2.6: Position #2: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

20) What about near the poles? In this orientation what is the length of the nighttime at
the North pole, and what is the length of the daytime at the South pole? Is this consistent
with the trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (4
points)

Experiment #3: Now we are going to approximate the Earth-Sun orientation six months
after that in Experiment #2. To do this correctly, the globe and the lamp should now
switch locations. Go ahead and do this if this lab is confusing you—or you can simply
rotate the globe apparatus by 180o so that the North polar axis is tilted exactly towards the
Sun. Try to get a good alignment by looking at the shadow of the wooden axis on the
globe. Since this is six months later, it easy to guess what season this is, but let’s prove it!
Complete the following two tables (4 points):

Table 2.7: Position #3: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

21) As in question #19, compare the results found here for the length of daytime and
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Table 2.8: Position #3: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

nighttime for the +45o degree latitude with that for Minneapolis. What season does this
appear to be? (2 points)

22) What about near the poles? In this orientation, how long is the daylight at the North
pole, and what is the length of the nighttime at the South pole? Is this consistent with the
trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (2 points)

23) Using your results for all three positions (Experiments #1, #2, and #3) can you
explain what is happening at the Equator? Does the data for Quito in Table 2.1 make
sense? Why? Explain. (3 points)

We now have discovered the driver for the seasons: the Earth spins on an axis that is
inclined to the plane of its orbit (as shown in Figure 2.4). But the spin axis always points to
the same place in the sky (towards Polaris). Thus, as the Earth orbits the Sun, the amount
of sunlight seen at a particular latitude varies: the amount of daylight and nighttime hours
change with the seasons. In Northern Hemisphere Summer (approximately June 21st) there
are more daylight hours, at the start of the Autumn (∼ Sept. 20th) and Spring (∼ Mar.
21st) the days are equal to the nights. In the Winter (approximately Dec. 21st) the nights
are long, and the days are short. We have also discovered that the seasons in the Northern
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and Southern hemispheres are exactly opposite. If it is Winter in Las Cruces, it is Summer
in Sydney (and vice versa). This was clearly demonstrated in our experiments, and is shown
in Figure 2.4.

Figure 2.4: The Earth’s spin axis always points to one spot in the sky, and it is tilted by
23.5o to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with latitude:
sometimes the North Pole is bathed in 24 hours of daylight, and sometimes in 24 hours of
night. The exact opposite is occurring in the Southern Hemisphere.

The length of the daylight hours is one reason why it is hotter in Summer than in Winter:
the longer the Sun is above the horizon the more it can heat the air, the land and the seas.
But this is not the whole story. At the North Pole, where there is constant daylight during
the Summer, the temperature barely rises above freezing! Why? We will discover the reason
for this now.

2.4 Elevation Angle and the Concentration of Sunlight

We have found out part of the answer to why it is warmer in summer than in winter: the
length of the day is longer in summer. But this is only part of the story–you would think
that with days that are 22 hours long during the summer, it would be hot in Alaska and
Canada during the summer, but it is not. The other affect caused by Earth’s tilted spin axis
is the changing height that the noontime Sun attains during the various seasons. Before we
discuss why this happens (as it takes quite a lot of words to describe it correctly), we want
to explore what happens when the Sun is higher in the sky. First, we need to define two new
terms: “altitude”, or “elevation angle”. As shown in the diagram in Fig. 2.5.

The Sun is highest in the sky at noon everyday. But how high is it? This, of course,
depends on both your latitude and the time of year. For Las Cruces, the Sun has an altitude
of 81◦ on June 21st. On both March 21st and September 20th, the altitude of the Sun at
noon is 57.5◦. On December 21st its altitude is only 34◦. Thus, the Sun is almost straight
overhead at noon during near the Summer Solstice, but very low during the Winter Solstice.
What difference can this possibly make? We now explore this using the other apparatus, the
elevation angle device, that accompanies this lab (the one with the protractor and flashlight).
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Figure 2.5: Altitude (“Alt”) is simply the angle between the horizon, and an object in the
sky. The smallest this angle can be is 0◦, and the maximum altitude angle is 90◦. Altitude
is interchangeably known as elevation.

Exercise #4: Using the elevation angle apparatus, we now want to measure what happens
when the Sun is at a higher or lower elevation angle. We mimic this by a flashlight mounted
on an arm that allows you to move it to just about any elevation angle. It is difficult to
exactly model the Sun using a flashlight, as the light source is not perfectly uniform. But
here we do as well as we can. Play around with the device.

24) Turn on the flashlight and move the arm to lower and higher angles. How does the
illumination pattern change? Does the illuminated pattern appear to change in brightness
as you change angles? Explain. (2 points)

Ok, now we are ready to begin to quantify this affect. Take a blank sheet of white paper
and tape it to the base so we have a more reflective surface. Now arrange the apparatus so
the elevation angle is 90◦. The illuminated spot should look circular. Measure the diameter
of this circle using a ruler.

25) The diameter of the illuminated circle is cm.

Do you remember how to calculate the area of a circle? Does the formula πR2 ring a bell?
R is the radius, not the diameter, so first you’ll need the radius of the circle.

The radius of the illuminated circle is cm.

The area of the circle of light at an elevation angle of 90◦ is cm2. (1
point)

Now, as you should have noticed at the beginning of this exercise, as you move the
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flashlight to lower and lower elevations, the circle changes to an ellipse. Now adjust the
elevation angle to be 45◦. Ok, time to introduce you to two new terms: the major axis and
minor axis of an ellipse. Both are shown in Fig. 2.6. The minor axis is the smallest
diameter, while the major axis is the longest diameter of an ellipse.

Figure 2.6: An ellipse with the major and minor axes defined.

Ok, now measure the lengths of the major (“a”) and minor (“b”) axes at 45◦:

26) The major axis has a length of a = cm, while the minor axis has a

length of b = cm.

The area of an ellipse is simply (π × a × b)/4. So, the area of

the ellipse at an elevation angle of 45◦ is: cm2 (1 point).

So, why are we making you measure these areas? Note that the black tube restricts the
amount of light coming from the flashlight into a cylinder. Thus, there is only a certain
amount of light allowed to come out and hit the paper. Let’s say there are “one hundred
units of light” emitted by the flashlight. Now let’s convert this to how many units of light
hit each square centimeter at angles of 90◦ and 45◦.

27) At 90◦, the amount of light per centimeter is 100 divided by the Area of circle

= units of light per cm2 (1 point).

28) At 45◦, the amount of light per centimeter is 100 divided by the Area of the ellipse

= units of light per cm2 (1 point).

29) Since light is a form of energy, at which elevation angle is there more energy per square
centimeter? Since the Sun is our source of light, what happens when the Sun is higher in
the sky? Is its energy more concentrated, or less concentrated? How about when it is low
in the sky? Can you tell this by looking at how bright the ellipse appears versus the circle?
(4 points)
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As we have noted, the Sun never is very high in the arctic regions of the Earth. In fact, at
the poles, the highest elevation angle the Sun can have is 23.5◦. Thus, the light from the
Sun is spread out, and cannot heat the ground as much as it can at a point closer to the
equator. That’s why it is always colder at the Earth’s poles than elsewhere on the planet.

You are now finished with the in-class portion of this lab. To understand why the Sun
appears at different heights at different times of the year takes a little explanation (and the
following can be read at home unless you want to discuss it with your TA). Let’s go back
and take a look at Fig. 2.3. Note that Polaris, the North Star, barely moves over the course
of a night or over the year—it is always visible. If you had a telescope and could point it
accurately, you could see Polaris during the daytime too. Polaris never sets for people in the
Northern Hemisphere since it is located very close to the spin axis of the Earth. Note that
as we move away from Polaris the circles traced by other stars get bigger and bigger. But
all of the stars shown in this photo are always visible—they never set. We call these stars
“circumpolar”. For every latitude on Earth, there is a set of circumpolar stars (the number
decreases as you head towards the equator).

Now let us add a new term to our vocabulary: the “Celestial Equator”. The Celestial
Equator is the projection of the Earth’s Equator onto the sky. It is a great circle that spans
the night sky that is directly overhead for people who live on the Equator. As you have now
learned, the lengths of the days and nights at the equator are nearly always the same: 12
hours. But we have also learned that during the Equinoxes, the lengths of the days and the
nights everywhere on Earth are also twelve hours. Why? Because during the equinoxes, the
Sun is on the Celestial Equator. That means it is straight overhead (at noon) for people
who live in Quito, Ecuador (and everywhere else on the equator). Any object that is on
the Celestial Equator is visible for 12 hours per night from everywhere on Earth. To try
to understand this, take a look at Fig. 2.7. In this figure is shown the celestial geometry
explicitly showing that the Celestial Equator is simply the Earth’s equator projected onto
the sky (left hand diagram). But the Earth is large, and to us, it appears flat. Since the
objects in the sky are very far away, we get a view like that shown in the right hand diagram:
we see one hemisphere of the sky, and the stars, planets, Sun and Moon rise in the east, and
set in the west. But note that the Celestial Equator exactly intersects East and West. Only
objects located on the Celestial Equator rise exactly due East, and set exactly due West. All
other objects rise in the northeast or southeast and set in the northwest or the southwest.
Note that in this diagram (for a latitude of 40◦) all stars that have latitudes (astronomers
call them “Declinations”, or “dec”) above 50◦ never set–they are circumpolar.

What happens is that during the year, the Sun appears to move above and below the
Celestial Equator. On, or about, March 21st the Sun is on the Celestial Equator, and each
day after this it gets higher in the sky (for locations in the Northern Hemisphere) until June
21st. After which it retraces its steps until it reaches the Autumnal Equinox (September
20th), after which it is South of the Celestial Equator. It is lowest in the sky on December
21st. This is simply due to the fact that the Earth’s axis is tilted with respect to its orbit,
and this tilt does not change. You can see this geometry by going back to the illuminated
globe model used in Exercise #3. If you stick a pin at some location on the globe away from
the equator, turn on the halogen lamp, and slowly rotate the entire apparatus around (while
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Figure 2.7: The Celestial Equator is the circle in the sky that is straight overhead (“the
zenith”) of the Earth’s equator. In addition, there is a “North Celestial” pole that is the
projection of the Earth’s North Pole into space (that almost points to Polaris). But the
Earth’s spin axis is tilted by 23.5◦ to its orbit, and the Sun appears to move above and
below the Celestial Equator over the course of a year.

keeping the pin facing the Sun) you will notice that the shadow of the pin will increase and
decrease in size. This is due to the apparent change in the elevation angle of the “Sun”.
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Name:
Date:

2.5 Take Home Exercise (35 total points)

On a clean sheet of paper, answer the following questions:

1. Why does the Earth have seasons?

2. What is the origin of the term “Equinox”?

3. What is the origin of the term “Solstice”?

4. Most people in the United States think the seasons are caused by the changing distance
between the Earth and the Sun. Why do you think this is?

5. What type of seasons would the Earth have if its spin axis was exactly perpendicular
to its orbital plane? Make a diagram like Fig. 2.4.

6. What type of seasons would the Earth have if its spin axis was in the plane of its orbit?
(Note that this is similar to the situation for the planet Uranus.)

7. What do you think would happen if the Earth’s spin axis wobbled randomly around
on a monthly basis? Describe how we might detect this.

2.6 Possible Quiz Questions

1) What does the term “latitude” mean?
2) What is meant by the term “Equator”?
3) What is an ellipse?
4) What are meant by the terms perihelion and aphelion?
5) If it is summer in Australia, what season is it in New Mexico?

2.7 Extra Credit (make sure to ask your TA for permission before
attempting, 5 points)

We have stated that the Earth’s spin axis constantly points to a single spot in the sky. This
is actually not true. Look up the phrase “precession of the Earth’s spin axis”. Describe
what is happening and the time scale of this motion. Describe what happens to the timing
of the seasons due to this motion. Some scientists believe that precession might help cause
ice ages. Describe why they believe this.
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Name(s):
Date:

3 Phases of the Moon

3.1 Introduction

Every once in a while, your teacher or TA is confronted by a student with the question
“Why can I see the Moon today, is something wrong?”. Surprisingly, many students have
never noticed that the Moon is visible in the daytime. The reason they are surprised is
that it confronts their notion that the shadow of the Earth is the cause of the phases–it is
obvious to them that the Earth cannot be causing the shadow if the Moon, Sun and Earth
are simultaneously in view! Maybe you have a similar idea. You are not alone, surveys of
science knowledge show that the idea that the shadow of the Earth causes lunar phases is
one of the most common misconceptions among the general public. Today, you will learn
why the Moon has phases, the names of these phases, and the time of day when these phases
are visible.

Even though they adhered to a “geocentric” (Earth-centered) view of the Universe, it
may surprise you to learn that the ancient Greeks completely understood why the Moon has
phases. In fact, they noticed during lunar eclipses (when the Moon does pass through the
Earth’s shadow) that the shadow was curved, and that the Earth, like the Moon, must be
spherical. The notion that Columbus feared he would fall of the edge of the flat Earth is
pure fantasy—it was not a flat Earth that was the issue of the time, but how big the Earth
actually was that made Columbus’ voyage uncertain.

The phases of the Moon are cyclic, in that they repeat every month. In fact the word
“month”, is actually an Old English word for the Moon. That the average month has 30
days is directly related to the fact that the Moon’s phases recur on a 29.5 day cycle. Note
that it only takes the Moon 27.3 days to orbit once around the Earth, but the changing
phases of the Moon are due to the relative to positions of the Sun, Earth, and Moon. Given
that the Earth is moving around the Sun, it takes a few days longer for the Moon to get to
the same relative position each cycle.

Your textbook probably has a figure showing the changing phases exhibited by the Moon
each month. Generally, we start our discussion of the changing phases of the Moon at “New
Moon”. During New Moon, the Moon is invisible because it is in the same direction as the
Sun, and cannot be seen. Note: because the orbit of the Moon is tilted with respect to the
Earth’s orbit, the Moon rarely crosses in front of the Sun during New Moon. When it does,
however, a spectacular “solar eclipse” occurs.

As the Moon continues in its orbit, it becomes visible in the western sky after sunset a
few days after New Moon. At this time it is a thin “crescent”. With each passing day, the
crescent becomes thicker, and thicker, and is termed a “waxing” crescent. About seven days
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after New Moon, we reach “First Quarter”, a phase when we see a half moon. The visible,
illuminated portion of the Moon continues to grow (“wax”) until fourteen days after New
Moon when we reach “Full Moon”. At Full Moon, the entire, visible surface of the Moon is
illuminated, and we see a full circle. After Full Moon, the illuminated portion of the Moon
declines with each passing day so that at three weeks after New Moon we again see a half
Moon which is termed “Third” or “Last” Quarter. As the illuminated area of the Moon is
getting smaller each day, we refer to this half of the Moon’s monthly cycle as the “waning”
portion. Eventually, the Moon becomes a waning crescent, heading back towards New Moon
to begin the cycle anew. Between the times of First Quarter and Full Moon, and between
Full Moon and Third Quarter, we sometimes refer to the Moon as being in a “gibbous”
phase. Gibbous means “hump-backed”. When the phase is increasing towards Full Moon,
we have a “waxing gibbous” Moon, and when it is decreasing, the “waning gibbous” phases.

The objective of this lab is to improve your understanding of the Moon phases [a topic that
you WILL see on future exams!]. This concept, the phases of the Moon, involves

1. the position of the Moon in its orbit around the Earth,

2. the illuminated portion of the Moon that is visible from here in Las Cruces, and

3. the time of day that a given Moon phase is at the highest point in the sky as seen from
Las Cruces.

You will finish this lab by demonstrating to your instructor that you do clearly understand
the concept of Moon phases, including an understanding of:

• which direction the Moon travels around the Earth

• how the Moon phases progress from day-to-day

• at what time of the day the Moon is highest in the sky at each phase

Materials

• small spheres (representing the Moon), with two different colored hemispheres. The
dark hemisphere represents the portion of the Moon not illuminated by the Sun.

• flashlight (representing the Sun)

• yourself (representing the Earth, and your nose Las Cruces!)

You will use the colored sphere and flashlight as props for this demonstration. Carefully
read and thoroughly answer the questions associated with each of the five Exercises on the
following pages. [Don’t be concerned about eclipses as you answer the questions in these
Exercises]. Using the dual-colored sphere to represent the Moon, the flashlight to represent
the Sun, and a member of the group to represent the Earth (with that person’s nose repre-
senting Las Cruces’ location), ‘walk through’ and ‘rotate through’ the positions indicated in
the Exercise figures to fully understand the situation presented.

Note that there are additional questions at the end.
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Work in Groups of Three People!

3.2 Exercise 1 (10 points)

The figure below shows a “top view” of the Sun, Earth, and eight different positions (1-8) of
the Moon during one orbit around the Earth. Note that the distances shown are not drawn
to scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s entire
surface that is illuminated for the eight positions (1-8) shown.

Ranking Order: Greatest A B C D E F G H Least

Or, the amount of the entire surface of the Moon illuminated by sunlight is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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3.3 Exercise 2 (10 points)

The figure below shows a “top view” of the Sun, Earth, and six different positions (1-6) of
the Moon during one orbit of the Earth. Note that the distances shown are not drawn to
scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s illuminated
surface that is visible from Earth for the six positions (1-6) shown.

Ranking Order: Greatest A B C D E F Least

Or, the amount of the Moon’s illuminated surface visible from Earth is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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3.4 Exercise 3 (10 points)

Shown below are different phases of the Moon as seen by an observer in the Northern
Hemisphere.

A B C D E

Ranking Instructions: Beginning with the waxing gibbous phase of the Moon, rank all
five Moon phases shown above in the order that the observer would see them over the next
four weeks (write both the picture letter and the phase name in the space provided!).

Ranking Order:

1) Waxing Gibbous

2)

3)

4)

5)

Or, all of these phases would be visible at the same time: (indicate with a check mark).
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3.5 Lunar Phases, and When They Are Observable

The next three exercises involve determining when certain lunar phases can be observed.
Or, alternatively, determining the approximate time of day or night using the position and
phase of the Moon in the sky.

In Exercises 1 and 2, you learned about the changing geometry of the Earth-Moon-Sun
system that is the cause of the phases of the Moon. When the Moon is in the same direction
as the Sun, we call that phase New Moon. During New Moon, the Moon rises with the Sun,
and sets with the Sun. So if the Moon’s phase was New, and the Sun rose at 7 am, the Moon
also rose at 7 am–even though you cannot see it! The opposite occurs at Full Moon: at Full
Moon the Moon is in the opposite direction from the Sun. Therefore, as the Sun sets, the
Full Moon rises, and vice versa. The Sun reaches its highest point in the sky at noon each
day. The Full Moon will reach the highest point in the sky at midnight. At First and Third
quarters, the Moon-Earth-Sun angle is a right angle, that is it has an angle of 90◦ (positions
3 and 6, respectively, in the diagram for exercise #2). At these phases, the Moon will rise or
set at either noon, or midnight (it will be up to you to figure out which is which!). To help
you with exercises 4 through 6, we include the following figure detailing when the observed
phase is highest in the sky.
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3.6 Exercise 4 (6 points)

In the set of figures below, the Moon is shown in the first quarter phase at different times of
the day (or night). Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would be seen, and write
it on each panel of the figure.
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3.7 Exercise 5 (6 points)

In the set of figures below, the Moon is shown overhead, at its highest point in the sky, but
in different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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3.8 Exercise 6 (6 points)

In the two sets of figures below, the Moon is shown in different parts of the sky and in
different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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3.9 Demonstrating Your Understanding of Lunar Phases

After you have completed the six Exercises and are comfortable with Moon phases, and how
they relate to the Moon’s orbital position and the time of day that a particular Moon phase
is highest in the sky, you will be verbally quizzed by your instructor (without the Exercises
available) on these topics. You will use the dual-colored sphere, and the flashlight, and a
person representing the Earth to illustrate a specified Moon phase (appearance of the Moon
in the sky). You will do this for three different phases. (17 points)
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Date:

3.10 Take-Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. If the Earth was one-half as massive as it actually is, how would the time interval
(number of days) from one Full Moon to the next in this ‘small Earth mass’ situa-
tion compare to the actual time interval of 29.5 days between successive Full Moons?
Assume that all other aspects of the Earth and Moon system, including the Moon’s
orbital semi-major axis, the Earth’s rotation rate, etc. do not change from their cur-
rent values. (15 points)

2. What (approximate) phase will the Moon be in one week from today’s lab? (5 points)

3. If you were on Earth looking up at a Full Moon at midnight, and you saw an astronaut
at the center of the Moon’s disk, what phase would the astronaut be seeing the Earth
in? Draw a diagram to support your answer. (15 points)

3.11 Possible Quiz Questions

1) What causes the phases of the Moon?
2) What does the term “New Moon” mean?
3) What is the origin of the word “Month”?
4) How long does it take the Moon to go around the Earth once?
5) What is the time interval between successive New Moons?

3.12 Extra Credit (make sure you get permission from your TA
before attempting, 5 points)

Write a one page essay on the term “Blue Moon”. Describe what it is, and how it got its
name.
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4 Estimating the Earth’s Density

4.1 Introduction

We know, based upon a variety of measurement methods, that the density of the Earth is
5.52 grams per cubic centimeter. [This value is equal to 5520 kilograms per cubic meter.
Your initial density estimate in Table 4.3 should be a value similar to this.] This density value
clearly indicates that Earth is composed of a combination of rocky materials and metallic
materials.

With this lab exercise, we will obtain some measurements, and use them to calculate our
own estimate of the Earth’s density. Our observations will be relatively easy to obtain, but
they will involve contacting someone in the Boulder, Colorado area (where the University of
Colorado is located) to assist with our observations. We will then do some calculations to
convert our measurements into a density estimate.

As we have discussed in class, and in previous labs this semester, we can calculate the
density of an object (say, for instance, a planet, or more specifically, the Earth) by knowing
that object’s mass and volume. It is a challenge, using equipment readily available to us,
to determine the Earth’s mass and its volume directly. [There is no mass balance large
enough upon which we can place the Earth, and if we could what would we have available to
“balance” the Earth?] But we have through the course of this semester discussed physical
processes which relate to mass. One such process is the gravitational attraction (force) one
object exerts upon another.

The magnitude of the gravitational force between two objects depends upon both the
masses of the two objects in question, as well as the distance separating the centers of the
two objects. Thus, we can use some measure of the Earth’s gravitational attraction for an
object upon its surface to ultimately determine the Earth’s mass. However, there is another
piece of information that we require, and that is the distance from the Earth’s surface to its
center: the Earth’s radius.

We will need to determine both the MASS of the Earth and the RADIUS of the Earth.
Since we will use the magnitude of Earth’s gravitational attraction to determine Earth’s
mass, and since this magnitude depends upon the Earth’s radius, well first determine Earth’s
circumference (which will lead us to the Earth’s radius and then to the Earth’s volume) and
then determine the Earth’s mass.
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4.2 Determining Earth’s Radius

Earlier this semester you read (or should have read!) in your textbook the description
of Eratosthenes’ method, implemented two-thousand plus years ago, to determine Earth’s
circumference. Since the Earth’s circumference is related to its radius as:

Circumference = 2 × π × RADIUS (with π = “pi” = 3.141592)

and the Earth’s volume is a function of its radius:

VOLUME = (4/3) × π × RADIUS3

We will implement Eratosthenes’ circumference measurement method and end up with an
estimate of the Earth’s radius.

Now, what measurements did Eratosthenes use to estimate Earth’s circumference? Er-
atosthenes, knowing that Earth is spherical in shape, realized that the length of an object’s
shadow would depend upon how far in latitude (north-or-south) the object was from being
directly beneath the Sun. He measured the length of a shadow cast by a vertical post in
Egypt at local noon on the day of the northern hemisphere summer solstice (June 20 or so).
He made a measurement at the point directly beneath the Sun (23.5 degrees North, at the
Egyptian city Syene), and at a second location further north (Alexandria, Egypt). The two
shadow lengths were not identical, and it is that difference in shadow length plus the knowl-
edge of how far apart the the two posts were from each other (a few hundred kilometers),
that permitted Eratosthenes to calculate his estimate of Earth’s circumference.

As we conduct this lab exercise we are not in Egypt, nor is today the seasonal date of the
northern hemisphere summer solstice (which occurs in June), nor is it locally Noon (since
our lab times do not overlap with Noon). But, nonetheless, we will forge ahead and estimate
the Earth’s circumference, and from this we will estimate the Earth’s radius.

TASKS:

• Take a post outside, into the sunlight, and measure the length of the post with the
tape measure.

• Place one end of the post on the ground, and hold the post as vertical as possible.

• Using the tape measure provided, measure to the nearest 1/2 centimeter the length of
the shadow cast by the post; this shadow length should be measured three times, by
three separate individuals; record these shadow lengths in Table 4.1.

• You will be provided with the length of a post and its shadow measured simultaneously
today in Boulder, Colorado.

1. Proceed through the calculations described after Table 4.1, and write your answers in
the appropriate locations in Table 4.1. (10 points)
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Table 4.1: Angle Data
Location Post Height Shadow Length Angle

(cm) (cm) (Degrees)
Las Cruces Shadow #1
Las Cruces Shadow #2
Las Cruces Shadow #3

Average Las Cruces Angle:
Boulder, Colorado

4.3 Angle Determination:

With a bit of trigonometry we can transform the height and shadow length you mea-
sured into an angle. As shown in Figure 4.1 there is a relationship between the length
(of your shadow in this situation) and the height (of the shadow-casting pole in this
situation), where:

TANGENT of the ANGLE = far-side length/ near-side length

Since you know the length of the post (the near-side length, which you have measured)
and the length of the shadow (the far-side length, which you have also measured, three
separate times), you can determine the shadow angle from your measurements, using
the ATAN, or TAN−1 capability on your calculator (these functions will give you an
angle if you provide the ratio of the height to length):

ANGLE = ATAN (shadow length / post length)

or

ANGLE = TAN−1(shadow length / post length)

Figure 4.1: The geometry of a vertical post sitting in sunlight.
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2. Calculate the shadow angle for each of your three shadow-length measure-
ments, and also for the Boulder, Colorado shadow-length measurement.
Write these angle values in the appropriate locations in Table 4.1. Then calculate the
average of the three Las Cruces shadow angles, and write the value on the “Average
Las Cruces Angle” line.

The angles you have determined are: 1) an estimate of the angle (latitude) difference
between Las Cruces and the latitude at which the Sun appears to be directly overhead
(which is currently ∼ 12 degrees south of the equator since we are experiencing early
northern autumn), and 2) the angle (latitude) difference between Boulder, Colorado
and the latitude at which the Sun appears to be directly overhead. The difference
(Boulder angle minus Las Cruces angle) between these two angles is the angular (lati-
tude) separation between Las Cruces and Boulder, Colorado.

We will now use this information and our knowledge of the actual distance (in kilome-
ters) between Las Cruces’ latitude and Boulder’s latitude. This distance is:

857 kilometers north-south distance between Las Cruces and Boulder, Colorado

In the same way that Eratosthenes used his measurements (just like those you have
made today), we can now determine an estimate of the Earth’s circumference.

3. Using your calculated Boulder Shadow Angle and your Average Las Cruces Shadow
Angle values, calculate the corresponding EARTH CIRCUMFERENCE value, and
write it below:

Average Earth Circumference (kilometers) =

857 kilometers × (360o)/(Boulder angle —Avg LC Angle) =

857 × [360o/( − )] = km (2 points)

The CIRCUMFERENCE value you have just calculated is related to the RADIUS
via the equation:

EARTH CIRCUMFERENCE = 2 × π × EARTH RADIUS

which can be converted to RADIUS using:

EARTH RADIUS = RE = EARTH CIRCUMFERENCE / (2 × π)
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4. For your calculated CIRCUMFERENCE, calculate that value of the Radius (in units
of kilometers) in the appropriate location below:

AVERAGE EARTH RADIUS VALUE = RE =
kilometers (3 points)

5. Convert this radius (RE) from kilometers to meters, and enter that value
in Table 4.3. (Note we will use the radius in meters the rest of this lab.)

You have now obtained one important piece of information (the radius of the Earth)
needed for determining the density of Earth. We will, in a bit, use this radius value to
calculate the Earth’s volume. Next, we will determine Earth’s mass, since we need to
know both the Earth’s volume and its mass in order to be able to calculate the Earth’s
density.

4.4 Determining the Earth’s Mass

The gravitational acceleration (increase of speed with increase of time) that a dropped
object experiences here at the Earth’s surface has a magnitude defined by the Equation
(thanks to Sir Isaac Newton for working out this relationship!) shown below:

Acceleration (meters per second per second) = G × ME/RE
2

Where ME is the mass of the Earth in kilograms, RE is the radius of the Earth in units
of meters, and the Gravitational Constant, G = 6.67 x 10−11 meters3/(kg-seconds2).
You have obtained several estimates, and calculated an average value of RE, above.
However, you currently have no estimate for ME. You can estimate the Earth’s mass
from the measured acceleration of an object dropped here at the surface of Earth; you
will now conduct such an exercise.

A falling object, as shown in Figure 4.2, increases its downward speed at the constant
rate “X” (in units of meters per second per second). Thus, as you hold an object in
your hand, its downward speed is zero meters per second. One second after you release
the object, its downward speed has increased to X meters per second. After two sec-
onds of falling, the dropped object has a speed of 2X meter per second, after 3 seconds
its downward speed is 3X meters per second, and so on. So, if we could measure the
speed of a falling object at some point in time after it is dropped, we could determine
the object’s acceleration rate, and from this determine the Earth’s mass (since we know
the Earth’s radius). However, it is difficult to measure the instantaneous speed of a
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Figure 4.2: The distance a dropped object will fall during a time interval t is proportional
to t2. A dropped object speeds up as it falls, so it travels faster and faster and falls a greater
distance as t increases.

dropped object.

We can, however, make a different measurement from which we can derive the dropped
object’s acceleration, which will then permit us to calculate the Earth’s mass. As was
pointed out above, before being dropped the object’s downward speed is zero meters per
second. One second after being dropped, the object’s downward speed is X meters per
second. During this one-second interval, what was the object’s AVERAGE downward
speed? Well, if it was zero to begin with, and X meters per second after falling for one
second, its average fall speed during the one-second interval is:

Average Fall speed during first second = (Zero + X) / 2 = X/2 meters
per second, which is just the average of the initial (zero) and final (X) speeds.

At an average speed of X/2 meters per second during the first second, the distance
traveled during that one second will be:

(X/2) (meters per second) × 1 second = (X/2) meters,

since:

DISTANCE = AVERAGE SPEED × TIME = 1/2 × ACCELERATION x

TIME2
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So, if we measure the length of time required for a dropped object to fall a certain
distance, we can calculate the object’s acceleration.

Tasks:

• Using a stopwatch, measure the amount of time required for a dropped object
(from the top of the Astronomy Building) to fall 9.0 meters (28.66 feet). Different
members of your group should take turns making the fall-time measurements;
write these fall time values for two “drops” in the appropriate location in Table
4.2. (10 points for a completed table)

• Use the equation: Acceleration = [2.0 x Fall Distance] / [(Time to
fall)2]

and your measured Time to Fall values and the measured distance (9.0 meters)
of Fall to determine the gravitational acceleration due to the Earth; write these
acceleration values (in units of meters per second per second) in the proper loca-
tions in Table 4.2.

• Now, knowing the magnitude of the average acceleration that Earth’s gravity
imposes upon a dropped object, we will now use the “Gravity” equation to get
ME:

Gravitational acceleration = G × ME/RE
2 (where RE must be in meters!)

Table 4.2: Time of Fall Data
Time to Fall Fall Distance Acceleration

Object Drop #1 9 meters
Object Drop #2 9 meters

Average =

6. By rearranging the Gravity equation to solve for ME, we can now make an estimate of
the Earth’s mass:
ME = Average Acceleration × (RE)2 / G = (5

points)

Write the value of ME (in kilograms) in Table 4.3 below.

4.5 Determining the Earth’s Density

Now that we have estimates for the mass (ME) and radius (RE) of the Earth, we can
easily calculate the density: Density = Mass/Volume. You will do this below.
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Tasks:

• Calculate the volume (VE) of the Earth given your determination of its radius in
meters!:

VE = (4/3) × π × RE
3

and write this value in the appropriate location in Table 4.3 below.

• Divide your value of ME (that you entered in Table 4.3) by your estimate of VE

that you just calculated (also written in Table 4.3): the result will be your estimate
of the Average Earth Density in units of kilograms per cubic meter. Write this
value in the appropriate location in Table 4.3.

• Divide your AVERAGE ESTIMATE OF EARTH’S DENSITY value that you just
calculated by the number 1000.0; the result will be your estimated Earth density
value in units of grams per cubic centimeter (the unit in which most densities are
tabulated). Write this value in the appropriate location in Table 4.3.

Table 4.3: Data for the Earth

Estimate of Earth’s Radius: m (4 points)

Estimate of Earth’s Mass: kg (4 points)

Estimate of Earth’s Volume: m3 (4 points)

Estimate of Earth’s Density: kg/m3 (4 points)

Converted Density of the Earth: gm/cm3 (4 points)
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4.6 In-Lab Questions:

1. Is your calculated value of the (Converted) Earth’s density GREATER THAN, or
LESS THAN, or EQUAL TO the actual value (see the Introduction) of the Earth’s
density? If your calculated density value is not identical to the known Earth density
value, calculate the “percent error” of your calculated density value compared to the
actual density value (2 points):

PERCENT ERROR =

100%× (CALCULATED DENSITY− ACTUAL DENSITY)

ACTUAL DENSITY
=

2. You used the AVERAGE Las Cruces shadow angle in calculating your estimate of the Earth’s
density (which you wrote down in Table 4.3). If you had used the LARGEST of the three
measured Las Cruces shadow angles shown in Table 4.1, would the Earth density value that
you would calculate with the LARGEST Las Cruces shadow angle be larger than or smaller
than the Earth density value you wrote in Table 4.3? Think before writing your answer!
Explain your answer. (5 points)

3. If the Las Cruces to Boulder, Colorado distance was actually 200 km in length, but your
measured fall times did not change from what you measured, would you have calculated a
larger or smaller Earth density value? Explain the reasoning for your answer. (3 points)
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4. If we had conducted this experiment on the Moon rather than here on the Earth, would
your measured values (fall time, angles and angle difference between two locations separated
north-south by 857 kilometers) be the same as here on Earth, or different? Clearly explain
your reasoning. [It might help if you draw a circle representing Earth and then draw a circle
with 1/4th of the radius of the Earth’s circle to represent the Moon.] (5 points)
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4.7 Take Home Exercise (35 points total)

1. Type a 1.5-2 page Lab Report in which you will address the following topics:

a) The estimated density value you arrived at was likely different from the actual Earth
density value of 5.52 grams per cubic centimeter; describe 2 or 3 potential errors in your
measurements that could possibly play a role in generating your incorrect estimated
density value.

b) Describe 2-3 ways in which you could improve the measurement techniques used
in lab; keep in mind that NMSU is a state-supported school and thus we do not have
infinite resources to purchase expensive sophisticated equipment, so your suggestions
should not be too expensive.

c) Describe what you have learned from this lab, what aspects of the lab surprised you,
what aspects of the lab worked just as you thought they would, etc.

4.8 Possible Quiz Questions

1. What is meant by the “radius” of a circle? (Drawing ok)

2. What does the term “circumference of a circle” mean?

3. How do you calculate the circumference of a circle if given the radius?

4. What is “pi” (or π)? What is the value of pi?

5. What is the volume of a sphere?

6. What does the term “density” mean?

4.9 Extra Credit (ask your TA for permission before attempting,
5 points)

Astronomers use density to segregate the planets into categories, such as “Terrestrial” and
“Jovian”. Using your book, or another reference, look up the density of the Sun and Jupiter
(or, if you have completed the previous lab, use the data table you constructed for Take-
Home portion of that lab). Compare the densities of the Sun and Jupiter. Do you think
they are composed of same elements? Why/why not? What are the two main elements in
the periodic table that dominate the composition of the Sun? If the material that formed
the Sun (and the Sun has 99.8% of the mass of the solar system) was the original “stuff”
from which all of the planets were formed, how did planets like Earth end up with such
high densities? What do you think might have happened in the distant past to the lighter
elements? (Hint: think of a helium balloon, or a glass of water thrown out onto a Las Cruces
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parking lot in the summer!).
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5 Kepler’s Laws

5.1 Introduction

Throughout human history, the motion of the planets in the sky was a mystery: why did
some planets move quickly across the sky, while other planets moved very slowly? Even two
thousand years ago it was apparent that the motion of the planets was very complex. For
example, Mercury and Venus never strayed very far from the Sun, while the Sun, the Moon,
Mars, Jupiter and Saturn generally moved from the west to the east against the background
stars (at this point in history, both the Moon and the Sun were considered “planets”). The
Sun appeared to take one year to go around the Earth, while the Moon only took about 30
days. The other planets moved much more slowly. In addition to this rather slow movement
against the background stars was, of course, the daily rising and setting of these objects.
How could all of these motions occur? Because these objects were important to the cultures
of the time. Being able to predict their motion was considered vital.

The ancient Greeks had developed a model for the Universe in which all of the planets
and the stars were embedded in perfect crystalline spheres that revolved around the Earth
at uniform, but slightly different speeds. This is the “geocentric”, or Earth-centered model.
But this model did not work very well, the speed of the planet across the sky changed.
Sometimes, a planet even moved backwards! The Egyptian astronomer Ptolemy (85 − 165
AD) finally came up with a model for the motion of the planets that accounted for some of
challenges. Ptolemy developed a complicated system to explain the motion of the planets,
including “epicycles” and “equants”, that in the end worked reasonably well, and no other
models for the motions of the planets were considered for 1500 years! While Ptolemy’s model
worked well, the philosophers of the time did not like this model, their Universe was perfect,
and Ptolemy’s model suggested that the planets moved in peculiar, imperfect ways.

In the 1540’s Nicholas Copernicus (1473 − 1543) published his work suggesting that
it was much easier to explain the complicated motion of the planets if the Earth revolved
around the Sun, and that the orbits of the planets were circular. While Copernicus was not
the first person to suggest this idea, the timing of his publication coincided with attempts to
revise the calendar and to fix a large number of errors in Ptolemy’s model that had shown
up over the 1500 years since the model was first introduced. But the “heliocentric” (Sun-
centered) model of Copernicus was slow to win acceptance, since it did not work as well as
the geocentric model of Ptolemy.

Johannes Kepler (1571 − 1630) was the first person to truly understand how the planets
in our solar system moved. Using the highly precise observations by Tycho Brahe (1546
− 1601) of the motions of the planets against the background stars, Kepler was able to
formulate three laws that described how the planets moved. With these laws, he was able to
predict the future motion of these planets to a higher precision than was previously possible.
Many credit Kepler with the origin of modern physics, as his discoveries were what led Isaac
Newton (1643 − 1727) to formulate the law of gravity. Today we will investigate Kepler’s
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laws.

5.2 Gravity

Gravity is the fundamental force governing the motions of astronomical objects. No other
force is as strong over as great a distance. Gravity influences your everyday life (ever drop
a glass?), and keeps the planets, moons, and satellites orbiting smoothly. Gravity affects
everything in the Universe including the largest structures like super clusters of galaxies
down to the smallest atoms and molecules.

Experimenting with gravity is difficult to do. You can’t just go around in space making
extremely massive objects and throwing them together from great distances. But you can
model a variety of interesting systems very easily using a computer. By using a computer to
model the interactions of massive objects like planets, stars and galaxies, we can study what
would happen in just about any situation. All we have to know are the equations which
predict the gravitational interactions of the objects.

The orbits of the planets are governed by a single equation formulated by Newton:

Fgravity =
GM1M2

R2
(1)

A diagram detailing the quantities in this equation is shown in Fig. 5.1. Here Fgravity is
the gravitational attractive force between two objects whose masses are M1 and M2. The
distance between the two objects is “R”. The gravitational constant G is just a small number
that scales the size of the force. The most important thing about gravity is that the
force depends only on the masses of the two objects and the distance between
them. This law is called an Inverse Square Law because the distance between the objects is
squared, and is in the denominator of the fraction. There are several laws like this in physics
and astronomy.

Figure 5.1: The force of gravity depends on the masses of the two objects (M1, M2), and the
distance between them (R).

5.3 Kepler’s Laws

Before you begin the lab, let’s state Kepler’s three laws, the basic description of how the
planets in our Solar System move. Kepler formulated his three laws in the early 1600’s,
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when he finally solved the mystery of how planets moved in our Solar System. These three
(empirical) laws are:

I. The orbits of the planets are ellipses with the Sun at one focus.

II. A line from the planet to the Sun sweeps out equal areas in equal intervals
of time.

III. A planet’s orbital period squared is proportional to its average distance
from the Sun cubed: P2 ∝ a3

In this lab, we will investigate these laws to develop your understanding of them.
Let’s look at the first law, and talk about the nature of an ellipse. What is an ellipse?

An ellipse is one of the special curves called a “conic section”. If we slice a plane through a
cone, four different types of curves can be made: circles, ellipses, parabolas, and hyperbolas.
This process, and how these curves are created is shown in Fig. 5.2.

Figure 5.2: Four types of curves can be generated by slicing a cone with a plane: a circle,
an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed
shapes of the orbits of planets, asteroids, comets and satellites!

Before we describe an ellipse, let’s examine a circle, as it is a simple form of an ellipse.
As you are aware, the circumference of a circle is simply 2πR. The radius, R, is the distance
between the center of the circle and any point on the circle itself. In mathematical terms, the
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Figure 5.3: An ellipse with the major and minor axes identified.

center of the circle is called the “focus”. An ellipse, as shown in Fig. 5.3, is like a flattened
circle, with one large diameter (the “major” axis) and one small diameter (the “minor” axis).
A circle is simply an ellipse that has identical major and minor axes. Inside of an ellipse,
there are two special locations, called “foci” (foci is the plural of focus, it is pronounced
“fo-sigh”). The foci are special in that the sum of the distances between the foci and any
points on the ellipse are always equal. Fig. 5.4 is an ellipse with the two foci identified, “F1”
and “F2”.

Exercise #1: On the ellipse in Fig. 5.4 are two X’s. Confirm that that sum of the
distances between the two foci to any point on the ellipse is always the same by measuring
the distances between the foci, and the two spots identified with X’s. Show your work. (3
points)

Figure 5.4: An ellipse with the two foci identified.
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Exercise #2: In the ellipse shown in Fig. 5.5, two points (“P1” and “P2”) are identified
that are not located at the true positions of the foci. Repeat exercise #1, but confirm that
P1 and P2 are not the foci of this ellipse. (3 points)

Figure 5.5: An ellipse with two non-foci points identified.

We will now use various online simulators to explore Kepler’s Laws of planetary motion

5.4 Simulator

We will be using the NAAP simulators which are located here:

https://astro.unl.edu/naap/pos/animations/kepler.html

5.5 Kepler’s 1st Law

If you have not already done so, launch the NAAP Planetary Orbit Simulator.

• Open the Kepler’s 1st Law tab if it is not already (it’s open by default).

• Enable all 5 check boxes.

• The white dot is the simulated planet. One can click on it and drag it around.

• Change the size of the orbit with the semimajor axis slider. Note how the background
grid indicates change in scale while the displayed orbit size remains the same.

• Change the eccentricity and note how it affects the shape of the orbit.
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Tip: You can change the value of a slider by clicking on the slider bar or by entering a
number in the value box.

Be aware that the ranges of several parameters are limited by practical issues that occur
when creating a simulator rather than any true physical limitations. The simulator limits
the semi-major axis to 50 AU since that covers most of the objects in which we are interested
in our solar system and have limited eccentricity to 0.7 since the ellipses would be hard to fit
on the screen for larger values. Note also that the semi-major axis is aligned horizontally for
all elliptical orbits created in this simulator, where they are randomly aligned in our solar
system.

• Animate the simulated planet. You may need to increase the animation rate for very
large orbits or decrease it for small ones.

• The planetary presets set the simulated planet’s parameters to those like our solar
system’s planets. Explore these options.

We will now be using this simulator to answer some questions on Kepler’s 1st law.

1. For what eccentricity is the secondary focus (which is usually empty) located at the
sun? What is the shape of this orbit? (2 points)

2. Create an orbit with a = 20 AU and e = 0. Drag the planet first to the far left of the
ellipse and then to the far right. What are the values of r1 and r2 at these locations?
(2 points)

r1 (AU) r2 (AU)
Far Left
Far Right

3. Create an orbit with a = 20 AU and e = 0.5. Drag the planet first to the far left of the
ellipse and then to the far right. What are the values of r1 and r2 at these locations?
(2 points)

r1 (AU) r2 (AU)
Far Left
Far Right
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4. What is the value of the sum of r1 and r2 and how does it relate to the ellipse properties?
Is this true for all ellipses? (3 points)

5. It is easy to create an ellipse using a loop of string and two thumbtacks. The string is
first stretched over the thumbtacks which act as foci. The string is then pulled tight
using the pencil which can then trace out the ellipse. Assume that you wish to draw
an ellipse with a semi-major axis of a = 20 cm and an eccentricity of e = 0.5. How
long would your string need to be? (Hint: think about the case where e = 0, i.e., a
circle). Given that the eccentricity of an ellipse is c/a, where c is the distance of each
focus from the center of the ellipse, how far apart would the thumbtacks (at the focii)
need to be? (4 points)

5.6 Kepler’s 2nd Law

• Use the ‘clear optional features’ button to remove the 1st Law features.

• Open the Kepler’s 2nd Law tab.

• Press the ‘start sweeping’ button. Adjust the semimajor axis and animation rate so
that the planet moves at a reasonable speed.

• Adjust the size of the sweep using the ‘adjust size’ slider.

• Click and drag the sweep segment around. Note how the shape of the sweep segment
changes, but the area does not.

• Add more sweeps. Erase all sweeps with the ‘erase sweeps’ button.

• The ‘sweep continuously’ check box will cause sweeps to be created continuously when
sweeping. Test this option.

1. Erase all sweeps and create an ellipse with a = 1 AU and e = 0. Set the fractional
sweep size to one-twelfth of the period. Drag the sweep segment around. Does its size
or shape change? (2 points)

2. Leave the semi-major axis at a = 1 AU and change the eccentricity to e = 0.5. Drag
the sweep segment around and note that its size and shape change. Where is the
sweep segment the widest? Where is it the narrowest? Where is the planet when it
is sweeping out each of these segments? What names do astronomers use for these
positions? (4 points)
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3. What eccentricity in the simulator gives the greatest variation of sweep segment shape?
2 points)

4. Halley’s comet has a semimajor axis of about 18.5 AU, a period of 76 years, and an
eccentricity of about 0.97 (so Halley’s orbit cannot be shown in this simulator.) The
orbit of Halley’s Comet, the Earth’s Orbit, and the Sun are shown in the diagram
below (not exactly to scale). Based upon what you know about Kepler’s 2nd Law,
explain why we can only see the comet for about 6 months every orbit (76 years)? (4
points)

5.7 Kepler’s 3rd Law

Kepler’s third law is:
Here is an example of how use this equation to make some predictions. If the average

distance of Jupiter from the Sun is about 5 AU, what is its orbital period? Set-up the
equation:

P (Jupiter)2 = a(Jupiter)3 = 53 = 5× 5× 5 = 125 (2)

So, for Jupiter, P 2 = 125. How do we figure out what P is? We have to take the square
root of both sides of the equation, which you can easily do with a calculator.

√
P 2 = P =

√
125 = 11.2 years (3)

The orbital period of Jupiter is approximately 11.2 years.
Similarly, if you are given the period of an orbit, you can find the semimajor axis: just

take the square of the period, and then you have to take the cube root of that number:

a3 = P 2 (4)

a =
3
√
P 2 (5)

You should also be able to do cube roots on your calculator.
Let’s investigate Kepler’s third law using the simulator.

• Use the ‘clear optional features’ button to remove the 2nd Law features.
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• Open the Kepler’s 3rd Law tab.

1. Use the simulator to complete the table below. (7 points)

Object P(years) a (AU) e P2 a3

Earth 1.00
Mars 1.52
Ceres 2.77 0.08
Chiron 50.7 0.38

2. As the size of a planet’s orbit increases, what happens to its period? (2 points)

3. Start with the Earth’s orbit and change the eccentricity to 0.6. Does changing the
eccentricity change the period of the planet? (2 point)

4. Kepler’s third law is P 2 = a3 where P is measured in years, and a is measured in
astronomical units. Using this relation, what would the period of an object be if it was
an in orbit with a semi-major axis of 4 AU? Show your work. (3 points)

5. What would the orbital semimajor axis be for an object that had an orbital period of
10 years? (3 points)

If one used units other than years for the period and AU for the semimajor axis, there
would be some other numbers in the equation for Kepler’s third law, but the basic relation
between the square of the period (P 2) and the semimajor axies (a3) would still be the same.
For example, say we measured the semimajor axis in kilometers (km) instead of in AU. We
can do a unit conversion (remember those from earlier labs?). Since 1 AU = 1.496×108 km,
we have:

P 2
years = a3AU =

(
akm

1AU

1.496× 108km

)3

= 2.99× 10−25a3km (6)

You would get some different number if you used some different units for either the period
or the semimajor axis, but you would always see a P 2 on the left side and an a3 on the right.
For this reason, scientist often represent the fundamentally important part of the relation
as a proportionality rather than as an equality, in other words, they would say that P 2 is
proportional to a3, which is a statement that is true independent of the units used. This is
often written as:

P 2 ∝ a3 (7)
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If you take the square root of both sides, this becomes:

P ∝ a3/2 = a1.5 (8)

Using proportionalities often makes calculations easier, because you can use ratios of
quantities from different objects. For example, if someone says that the semimajor axis of
some object is twice that of Jupiter, you can tell them what the period of that object is
relative to the period of Jupiter:(

P (object)

P (Jupiter)

)
=

(
a(object)

a(Jupiter)

)1.5

= 21.5 = 2.82 times the period of Jupiter (9)

without ever needing to know what the semimajor axis or the period of Jupiter is at all!

1. The proportionality part of Kepler’s third law holds for all orbiting objects, although
the equality does not. Imagine we discovered another system of planets around another
star, and found that a planet located at 1 AU from the star took 2 years to go around
(this would happen if the star was less massive than our Sun). How long would it take
a planet that was located at 4 AU from that star to orbit the star? Use equation 9
and explain your reasoning. (5 points)

5.8 Take Home Exercise (35 points total):

On a clean sheet of paper, please summarize the important concepts of this lab. Use complete
sentences, and proofread your summary before handing in the lab. Your response should
include:

• Describe the Law of Gravity and what happens to the gravitational force as a) as the
masses increase, and b) the distance between the two objects increases

• Describe Kepler’s three laws in your own words, and describe how you tested each one
of them.

• Mention some of the things which you have learned from this lab

• Astronomers think that finding life on planets in binary systems is unlikely. Why do
they think that? Use your simulation results to strengthen your argument.

5.9 Possible Quiz Questions

1. Describe the difference between an ellipse and a circle.

2. List Kepler’s three laws.

3. How quickly does the strength (“pull”) of gravity get weaker with distance?

4. Describe the major and minor axes of an ellipse.

67



Name:
Date:

6 Scale Model of the Solar System

6.1 Introduction

The Solar System is large, at least when compared to distances we are familiar with on a
day-to-day basis. Consider that for those of you who live here in Las Cruces, you travel
2 kilometers (or 1.2 miles) on average to campus each day. If you go to Albuquerque on
weekends, you travel about 375 kilometers (232.5 miles), and if you travel to Disney Land
for Spring Break, you travel ∼ 1,300 kilometers (∼ 800 miles), where the ‘∼’ symbol means
“approximately.” These are all distances we can mentally comprehend.

Now, how large is the Earth? If you wanted to take a trip to the center of the Earth
(the very hot “core”), you would travel 6,378 kilometers (3954 miles) from Las Cruces down
through the Earth to its center. If you then continued going another 6,378 kilometers you
would ‘pop out’ on the other side of the Earth in the southern part of the Indian Ocean.
Thus, the total distance through the Earth, or the diameter of the Earth, is 12,756 kilome-
ters (∼ 7,900 miles), or 10 times the Las Cruces-to-Los Angeles distance. Obviously, such
a trip is impossible–to get to the southern Indian Ocean, you would need to travel on the
surface of the Earth. How far is that? Since the Earth is a sphere, you would need to travel
20,000 km to go halfway around the Earth (remember the equation Circumference = 2πR?).
This is a large distance, but we’ll go farther still.

Next, we’ll travel to the Moon. The Moon, Earth’s natural satellite, orbits the Earth at
a distance of ∼ 400,000 kilometers (∼ 240,000 miles), or about 30 times the diameter of the
Earth. This means that you could fit roughly 30 Earths end-to-end between here and the
Moon. This Earth-Moon distance is ∼ 200,000 times the distance you travel to campus each
day (if you live in Las Cruces). So you can see, even though it is located very close to us, it
is a long way to the Earth’s nearest neighbor.

Now let’s travel from the Earth to the Sun. The average Earth-to-Sun distance, ∼ 150
million kilometers (∼ 93 million miles), is referred to as one Astronomical Unit (AU).
When we look at the planets in our Solar System, we can see that the planet Mercury, which
orbits nearest to the Sun, has an average distance of 0.4 AU and Pluto, the planet almost
always the furthest from the Sun, has an average distance of 40 AU. Thus, the Earth’s dis-
tance from the Sun is only 2.5 percent of the distance between the Sun and planet Pluto!!
Pluto is very far away!

The purpose of today’s lab is to allow you to develop a better appreciation for the distances
between the largest objects in our solar system, and the physical sizes of these objects rela-
tive to each other. To achieve this goal, we will use the length of the football field in Aggie
Memorial Stadium as our platform for developing a scale model of the Solar System. A scale
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model is simply a tool whereby we can use manageable distances to represent larger distances
or sizes (like the road map of New Mexico used in Lab #1). We will properly distribute our
planets on the football field in the same relative way they are distributed in the real Solar
System. The length of the football field will represent the distance between the Sun and the
planet Pluto. We will also determine what the sizes of our planets should be to appropriately
fit on the same scale. Before you start, what do you think this model will look like?

Below you will proceed through a number of steps that will allow for the development
of a scale model of the Solar System. For this exercise, we will use the convenient unit of
the Earth-Sun distance, the Astronomical Unit (AU). Using the AU allows us to keep our
numbers to manageable sizes.

SUPPLIES: a calculator, the football field in Aggie Memorial Stadium, and a collection of
different sized spherical-shaped objects

6.2 The Distances of the Planets From the Sun

Fill in the first and second columns of Table 6.1. In other words, list, in order of increasing
distance from the Sun, the planets in our solar system and their average distances from
the Sun in Astronomical Units (usually referred to as the “semi-major axis” of the planet’s
orbit). You can find these numbers in back of your textbook. (21 points)

Table 6.1: Planets’ average distances from Sun.
Average Distance From Sun

Planet AU Yards

Earth 1

Pluto 40 100

Next, we need to convert the distance in AU into the unit of a football field: the yard. This is
called a “scale conversion”. Determine the SCALED orbital semi-major axes of the planets,
based upon the assumption that the Sun-to-Pluto average distance in Astronomical Units
(which is already entered into the table, above) is represented by 100 yards, or goal-line to
goal-line, on the football field. To determine similar scalings for each of the planets, you
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must figure out how many yards there are per AU, and use that relationship to fill in the
values in the third column of Table 6.1.

6.3 Sizes of Planets

You have just determined where on the football field the planets will be located in our scaled
model of the Solar System. Now it is time to determine how large (or small) the planets
themselves are on the same scale.

We mentioned in the introduction that the diameter of the Earth is 12,756 kilometers,
while the distance from the Sun to Earth (1 AU) is equal to 150,000,000 km. We have also
determined that in our scale model, 1 AU is represented by 2.5 yards (= 90 inches).

We will start here by using the largest object in the solar system, the Sun, as an exam-
ple for how we will determine how large the planets will be in our scale model of the solar
system. The Sun has a diameter of ∼ 1,400,000 (1.4 million) kilometers, more than 100
times greater than the Earth’s diameter! Since in our scaled model 150,000,000 kilometers
(1 AU) is equivalent to 2.5 yards, how many inches will correspond to 1,400,000 kilometers
(the Sun’s actual diameter)? This can be determined by the following calculation:

Scaled Sun Diameter = Sun’s true diameter (km) × (90 in.)
(150,000,000 km)

= 0.84 inches

So, on the scale of our football field Solar System, the scaled Sun has a diameter of only 0.84
inches!! Now that we have established the scaled Sun’s size, let’s proceed through a similar
exercise for each of the nine planets, and the Moon, using the same formula:

Scaled object diameter (inches) = actual diameter (km) × (90 in.)
(150,000,000 km)

Using this equation, fill in the values in Table 6.2 (8 points).

Now we have all the information required to create a scaled model of the Solar System.
Using any of the items listed in Table 6.3 (spheres of different diameter), select the ones that
most closely approximate the sizes of your scaled planets, along with objects to represent
both the Sun and the Moon.

Designate one person for each planet, one person for the Sun, and one person for the
Earth’s Moon. Each person should choose the model object which represents their solar
system object, and then walk (or run) to that object’s scaled orbital semi-major axis on the
football field. The Sun will be on the goal line of the North end zone (towards the Pan Am
Center) and Pluto will be on the south goal line.

Observations:

On Earth, we see the Sun as a disk. Even though the Sun is far away, it is physically so
large, we can actually see that it is a round object with our naked eyes (unlike the planets,
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Table 6.2: Planets’ diameters in a football field scale model.
Object Actual Diameter (km) Scaled Diameter (inches)

Sun ∼ 1,400,000 0.84
Mercury 4,878
Venus 12,104
Earth 12,756 0.0075
Moon 3,476
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.0013

Table 6.3: Objects that Might Be Useful to Represent Solar System Objects
Object Diameter (inches)
Basketball 15
Tennis ball 2.5
Golf ball 1.625
Nickel 0.84
Marble 0.5
Peppercorn 0.08
Sesame seed 0.07
Poppy seed 0.04
Sugar grain 0.02
Salt grain 0.01
Ground flour 0.001

71



where we need a telescope to see their tiny disks). Let’s see what the Sun looks like from
the other planets! Ask each of the “planets” whether they can tell that the Sun is a round
object from their “orbit”. What were their answers? List your results here: (5 points):

Note that because you have made a “scale model”, the results you just found would be
exactly what you would see if you were standing on one of those planets!

6.4 Questions About the Football Field Model

When all of the “planets” are in place, note the relative spacing between the planets, and
the size of the planets relative to these distances. Answer the following questions using the
information you have gained from this lab and your own intuition:

1) Is this spacing and planet size distribution what you expected when you first began
thinking about this lab today? Why or why not? (10 points)

2) Given that there is very little material between the planets (some dust, and small bits of
rock), what do you conclude about the nature of our solar system? (5 points)
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3) Which planet would you expect to have the warmest surface temperature? Why? (2
points)

4) Which planet would you expect to have the coolest surface temperature? Why? (2
points)

5) Which planet would you expect to have the greatest mass? Why? (3 points)

6) Which planet would you expect to have the longest orbital period? Why? (2 points)

7) Which planet would you expect to have the shortest orbital period? Why? (2 points)

8) The Sun is a normal sized star. As you will find out at the end of the semester, it will
one day run out of fuel (this will happen in about 5 billion years). When this occurs, the
Sun will undergo dramatic changes: it will turn into something called a “red giant”, a cool
star that has a radius that may be 100× that of its current value! When this happens,
some of the innermost planets in our solar system will be “swallowed-up” by the Sun.
Calculate which planets will be swallowed-up by the Sun (5 points).

73



6.5 Take Home Exercise (35 points total)

Now you will work out the numbers for a scale model of the Solar System for which the size
of New Mexico along Interstate Highway 25 will be the scale.

Interstate Highway 25 begins in Las Cruces, just southeast of campus, and continues north
through Albuquerque, all the way to the border with Colorado. The total distance of I-25
in New Mexico is 455 miles. Using this distance to represent the Sun to Pluto distance (40
AU), and assuming that the Sun is located at the start of I-25 here in Las Cruces and Pluto
is located along the Colorado-New Mexico border, you will determine:

• the scaled locations of each of the planets in the Solar System; that is, you will deter-
mine the city along the highway (I-25) each planet will be located nearest to, and how
far north or south of this city the planet will be located. If more than one planet is
located within a given city, identify which street or exit the city is nearest to.

• the size of the Solar system objects (the Sun, each of the planets) on this same scale,
for which 455 miles (∼ 730 kilometers) corresponds to 40 AU. Determine how large
each of these scaled objects will be (probably best to use feet; there are 5280 feet per
mile), and suggest a real object which well represents this size. For example, if one of
the scaled Solar System objects has a diameter of 1 foot, you might suggest a soccer
ball as the object that best represents the relative size of this object.

If you have questions, this is a good time to ask!!!!!!

1. List the planets in our solar system and their average distances from the Sun in units
of Astronomical Units (AU). Then, using a scale of 40 AU = 455 miles (1 AU = 11.375
miles), determine the scaled planet-Sun distances and the city near the location of this
planet’s scaled average distance from the Sun. Insert these values into Table 6.4, and
draw on your map of New Mexico (on the next page) the locations of the solar system
objects. (20 points)

2. Determine the scaled size (diameter) of objects in the Solar System for a scale in which
40 AU = 455 miles, or 1 AU = 11.375 miles). Insert these values into Table 6.5. (15
points)

Scaled diameter (feet) = actual diameter (km) × (11.4 mi. × 5280 ft/mile)
150,000,000 km

74



Table 6.4: Planets’ average distances from Sun.
Average Distance from Sun

Planet in AU in Miles Nearest City

Earth 1 11.375

Jupiter 5.2

Uranus 19.2

Pluto 40 455 3 miles north of Raton

Table 6.5: Planets’ diameters in a New Mexico scale model.
Object Actual Diameter (km) Scaled Diameter (feet) Object

Sun ∼ 1,400,000 561.7
Mercury 4,878
Venus 12,104
Earth 12,756 5.1 height of 12 year old
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.87 soccer ball
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6.6 Possible Quiz Questions

1. What is the approximate diameter of the Earth?

2. What is the definition of an Astronomical Unit?

3. What value is a “scale model”?

6.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Later this semester we will talk about comets, objects that reside on the edge of our Solar
System. Most comets are found either in the “Kuiper Belt”, or in the “Oort Cloud”. The
Kuiper belt is the region that starts near Pluto’s orbit, and extends to about 100 AU. The
Oort cloud, however, is enormous: it is estimated to be 40,000 AU in radius! Using your
football field scale model answer the following questions:

1) How many yards away would the edge of the Kuiper belt be from the northern goal
line at Aggie Memorial Stadium?

2) How many football fields does the radius of the Oort cloud correspond to? If there
are 1760 yards in a mile, how many miles away is the edge of the Oort cloud from the north-
ern goal line at Aggie Memorial Stadium?
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7 Reflectance Spectroscopy

7.1 Introduction

With this lab, we will look at the wavelength dependence of the visible reflectance of var-
ious objects, and learn what this can tell us about the composition of those objects. This
is one technique by which we determine the composition of various solar system objects
(e.g. Martian rocks, asteroids, clouds on Jupiter). We will specifically apply this method
of investigation, using a hand-held reflectance spectrometer, to the reflectance characteris-
tics of several different colored sheets of construction paper. We will then use these known
spectra for different colors to identify some “mystery” objects for which we know only their
reflectance as a function of wavelength.

We will use an ALTA reflectance spectrometer for this lab. This is an instrument that
can quantitatively measure the reflectance in nine wavelength channels covering visible and
near infrared wavelengths. The ALTA reflectance spectrometer provides measurements in
units of millivolts. As the intensity of the measured (reflected) light changes, the displayed
number (voltage) will change in the same proportion. That is, if the intensity of measured
reflected light decreases by a factor of two, the displayed value will also decrease by a factor
of two. What we will ultimately be interested in for each wavelength and for each object
is the percentage of incident light that is reflected. That is, if all the light of a particular
wavelength is reflected, that object has a 100% reflectance at that wavelength. If none of
the incident light is reflected (it is all absorbed), the object has a zero-percent reflectance at
that wavelength.

When we apply reflectance spectroscopy to solar system objects, the Sun is the source of the
light that is reflected. Thus, if we know the spectral characteristics (intensity as a function
of wavelength) of the Sun, we can measure the intensity of reflectance at our chosen wave-
lengths accurately. With the ALTA reflectance spectrometer, we do not use sunlight as our
‘source’. Rather, the spectrometer itself has nine bulbs (arranged in a circular pattern) that
emit light of specified wavelengths (indicated on the buttons on the front of the instrument)
and one detector which measures reflected radiation. The emitted light reflects off the object
of interest and is measured by the detector located at the center of the circular pattern of
bulbs. By proceeding through the nine wavelengths, we obtain the intensity of reflected light
at each wavelength, and from this we can determine the reflectance spectrum of our objects
of interest.

7.2 Exercises

Start by pressing one of the wavelength buttons on the front of the spectrometer and while
depressing this button, turn the spectrometer over. You should see one of the bulbs ar-
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ranged in a circular pattern illuminated (unless you are pressing one of the two near-infrared
wavelength buttons). Release the button you are holding and press a different button; you
should now see a different bulb illuminated. Remember, the ‘bulb’ at the center is actually
the detector, which measures the reflected light.

1. Our first order of business is to determine what the instrument signal is when no light
is available. This is called the dark voltage value and must be subtracted from all
subsequent measurements with the spectrometer. Turn the spectrometer on and set it
down on the table; the value currently in the display area is the dark voltage. Write
this number down, as it will be subtracted from all subsequent measured values. Also
write the unit number or letter of the spectrometer. (2 points)

DARK VOLTAGE READING =
SPECTROMETER # or Letter =
(located in the upper right corner on the front of the spectrometer)

2. Now, since our spectrometer is not calibrated (we do not know what millivolt values
to expect for 100 percent reflection, and there is no reason why this value must be
the same for each wavelength), we will use a piece of white poster board to determine
the ‘standard’ against which our reflectance spectra of several colored papers will be
compared. In order to do this, we will measure the value (in millivolts) of reflected
light from the white poster board for each of the nine wavelength channels of the spec-
trometer. Do this by:

• Placing the spectrometer onto the white poster board

• Sequentially pressing the nine wavelength buttons on the spectrometer

• While pressing each button, note the millivolt value that appears in the display
and write this value down in Measured Value column of Table 7.2 for the appro-
priate wavelength

Remember, we are measuring the intensity of the light that has been: a) emitted by the
spectrometer bulb, then b) reflected off the poster board, and then finally, c) measured
by the spectrometer.

Since it is a white surface that we are measuring the reflectance from, we will ex-
pect that the reflectance (percent of light reflected) will not vary too much among the
nine wavelengths (since ‘white’ is the combination of all wavelengths). We will assume
that each wavelength is 100 percent reflected from the white surface. After determin-
ing the measured ‘calibration’ values for each wavelength, subtract the ‘Dark Voltage’
value from these calibration values to obtain the ‘standard’ value for each wavelength,
and write these values in the right-hand column of Table 7.2. (9 points)
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Wavelength Measured Value Standard
(nanometers) (millivolts) (Measured - Dark Voltage)

470
555
585
605
635
660
695
880
940

Table 7.1: ALTA Spectrometer, White poster board calibration determination. (Recall that
1 nanometer = 10−9 m = 1 billionth of a meter.)

Wavelength Measured Value Standard
(nanometers) (millivolts) (Measured - Dark Voltage)

470
525
560
585
605
645
700
735
810
880
940

Table 7.2: ALTA II Spectrometer, White poster board calibration determination. (Recall
that 1 nanometer = 10−9 m = 1 billionth of a meter.)

3. Rather than comparing the reflectance spectra of rocks on Mars, as the Mars Pathfinder
camera did, or clouds on Jupiter (as the Voyager and Galileo spacecraft have done),
you will obtain and compare the reflectance spectra of several different colors of con-
struction paper. When you have measured the spectra of the three pieces of colored
paper, you will plot their spectra.

For each piece of colored paper,

• Measure the reflectance of that piece of paper at each wavelength in the same
manner as you determined the spectrometer’s ‘Measured Value’ above, writing
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the corresponding millivolt value for each wavelength in the Meas. column in
Table 7.4.

• For each wavelength for each piece of paper, calculate the Measured minus Dark
Voltage value. To do this, subtract your instrument’s Dark Voltage value from
the Meas. column value at each wavelength for each colored piece of paper.

• Determine the Reflectance value of each colored sheet of paper at each wavelength
using the formula below, in which ‘STANDARD Value’ is the value in the right-
most column of Table 7.2 at the appropriate wavelength. The REFLECTANCE
values you arrive at should have values between 0 and 1. Write your calculated
reflectance values in the “Reflect.” columns of Table 7.4 for the appropriate colored
piece of paper. (20 points)

Reflectance = MeasuredValue−DarkValue
STANDARDValue

λ Red Paper Green Paper Blue Paper

(nm) Meas. Meas.-Dark Reflect. Meas. Meas.-Dark Reflect. Meas. Meas.-Dark Reflect.

470

555

585

605

635

660

695

880

940

Table 7.3: ALTA Reflectance Spectrometer Values (millivolts)

λ Red Paper Green Paper Blue Paper

(nm) Meas. Meas.-Dark Reflect. Meas. Meas.-Dark Reflect. Meas. Meas.-Dark Reflect.

470

525

560

585

600

645

700

735

810

880

940

Table 7.4: ALTA II Reflectance Spectrometer Values (millivolts)
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4. On the sheets of graph paper at the end of this lab, plot the Reflectance values [column
3 Reflect. values in Table 7.4] you have calculated for each of the 3 colored pieces of
paper. For each piece of colored paper and the calculated Reflectance values, draw a
dot at the appropriate Reflectance value (y-axis) and appropriate wavelength point (x-
axis). After you have drawn all 9 dots for a single sheet of colored paper, connect the
dots. This curve you have drawn is a Reflectance Spectrum. Repeat this procedure
for your Reflectance results for the other two sheets of colored paper. Clearly label
your three resulting curves. (15 points)

5. Compare your three curves (reflectance spectra of the colored sheets of paper) with the
spectra of the two mystery objects (A and B). The two mystery curves are the spectra
for two separate objects. These objects are included among those listed below. Using
your knowledge of the color of the objects in the list below, a) determine which object
each of the mystery spectra corresponds to, and b) describe below how you have made
this determination. You may find it useful to refer to Figure 6.6 on page 157 of your
text to relate wavelength to color. (7 points each)

Tomato blade of grass White Paper
Black Paper Eggplant Navel Orange

Pink Flamingo Neptune (page 215 of text) Lemon

Object # :

Object # :

Mystery Planet:
The last graph in this lab shows a reflectance spectrum for a newly discovered planet
that was just visited by a NASA spacecraft. Does this planet have vegetation on its
surface? Justify your answer. (5 points)
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Name:
Date:

7.3 Take Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. Why does the planet Jupiter appear brighter in the night sky than Mars, even though
Mars is much closer to Earth than Jupiter? [Hint: the third column in Table 8.1 on
page 200 of your textbook might be helpful.] (10 points)

2. Imagine that the colored lightbulbs in the Alta reflectance spectrometers emitted twice
as much light as they actually do. In this brighter bulb situation, would you determine
“Reflect.” values that are the same as those you have written in Table 7.4, or would
you determine different (larger, smaller) Reflect. values with these brighter bulbs?
Why? (10 points)

3. Clearly describe a concept you have learned in this lab, or last week in class, during our
discussions about radiation. Describe something that you have not already addressed
by answering other questions in this lab. (15 points)

7.4 Possible Quiz Questions

1. What is meant by the term “wavelength of light”?

2. What are the physical units of wavelength?

3. What is the definition of the word “spectroscopy”?

4. If a blade of grass is “green”, why does it look green?

7.5 Extra Credit (ask your TA for permission before attempting,
5 points)

Look up the spectrum of chlorophyll. Note that a spectrum can either be a “reflection” spec-
trum or an “absorption” spectrum. One is simply the inverse of the other. So, depending
on the author’s preference, they will plot one or the other type of spectrum for chlorophyll.
Chlorophyll is why most plants look green. Describe how chlorophyll interacts with light.
What does chlorophyll do for plants? Why do you think it works this way? Rocks, ices,
and gases all have complicated spectra, absorbing some wavelengths of light, and reflecting
(or transmitting) others. The uniqueness of the spectra of these items allows astronomers
to determine the composition of an object by using spectroscopy.
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Date:

8 Building a Comet

During this semester we have explored the surfaces of the Moon, terrestrial planets and other
bodies in the solar system, and found that they often are riddled with craters. In Lab 12
there is a discussion on how these impact craters form. Note that every large body in the
solar system has been bombarded by smaller bodies throughout all of history. In fact, this
is one mechanism by which planets grow in size: they collect smaller bodies that come close
enough to be captured by the planet’s gravity. If a planet or moon has a rocky surface, the
surface can still show the scars of these impact events–even if they occurred many billions
of years ago! On planets with atmospheres, like our Earth, weather can erode these impact
craters away, making them difficult to identify. On planets that are essentially large balls of
gas (the “Jovian” planets), there is no solid surface to record impacts. Many of the smaller
bodies in the solar system, such as the Moon, the planet Mercury, or the satellites of the
Jovian planets, do not have atmospheres, and hence, faithfully record the impact history
of the solar system. Astronomers have found that when the solar system was very young,
there were large numbers of small bodies floating around the solar system impacting the
young planets and their satellites. Over time, the number of small bodies in the solar system
has decreased. Today we will investigate how impact craters form, and examine how they
appear under different lighting conditions. During this lab we will discuss both asteroids
and comets, and you will create your own impact craters as well as construct a “comet”.

• Goals: to discuss asteroids and comets; create impact craters; build a comet and test
its strength and reaction to light

• Materials: A variety of items supplied by your TA

8.1 Asteroids and Comets

There are two main types of objects in the solar system that represent left over material from
its formation: asteroids and comets. In fact, both objects are quite similar, their differences
arise from the fact that comets are formed from material located in the most distant parts of
our solar system, where it is very cold, and thus they have large quantities of frozen water and
other frozen liquids and gases. Asteroids formed closer-in than comets, and are denser, being
made-up of the same types of rocks and minerals as the terrestrial planets (Mercury, Venus,
Earth, and Mars). Asteroids are generally just large rocks, as shown in Fig. 8.1 shown below.

The first asteroid, Ceres, was discovered in 1801 by the Italian astronomer Piazzi. Ceres
is the largest of all asteroids, and has a diameter of 933 km (the Moon has a diameter of 3,476
km). There are now more than 700,000 asteroids that have been discovered (as of 2015),
ranging in size from Ceres, all the way down to large rocks that are just a few hundred
meters across. It has been estimated that there are at least 1 million asteroids in the solar
system with diameters of 1 km or more. Most asteroids are harmless, and spend all of their
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Figure 8.1: Four large asteroids. Note that these asteroids have craters from the impacts of
even smaller asteroids!

time in orbits between those of Mars and Jupiter (the so-called “asteroid belt”, see Figure
8.2). Some asteroids, however, are in orbits that take them inside that of the Earth, and

Figure 8.2: The Asteroid Belt.

could potentially collide with the Earth, causing a great catastrophe for human life. It is
now believed that the impact of a large asteroid might have been the cause for the extinction
of the dinosaurs when its collision threw up a large cloud of dust that caused the Earth’s
climate to dramatically cool. Several searches are underway to ensure that we can identify
future “doomsday” asteroids so that we have a chance to prepare for a collision–as the Earth
will someday be hit by another large asteroid.
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8.2 Comets

Comets represent some of the earliest material left over from the formation of the solar
system, and are therefore of great interest to planetary astronomers. They can also be
beautiful objects to observe in the night sky, unlike their darker and less spectacular cousins,
asteroids. They therefore often capture the attention of the public.

8.3 Composition and Components of a Comet

Comets are composed of ices (water ice and other kinds of ices), gases (carbon dioxide,
carbon monoxide, hydrogen, hydroxyl, oxygen, and so on), and dust particles (carbon and
silicon). The dust particles are smaller than the particles in cigarette smoke. In general, the
model for a comet’s composition is that of a “dirty snowball.” 8.3

Figure 8.3: The main components of a comet.

Comets have several components that vary greatly in composition, size, and brightness.
These components are the following:

• nucleus: made of ice and rock, roughly 5-10 km across

• coma: the “head” of a comet, a large cloud of gas and dust, roughly 100,000 km in
diameter

• gas tail: straight and wispy; gas in the coma becomes ionized by sunlight, and gets
carried away by the solar wind to form a straight blueish “ion” tail. The shape of the
gas tail is influenced by the magnetic field in the solar wind. Gas tails are pointed in
the direction directly opposite the sun, and can extend 108 km.

• dust tail: dust is pushed outward by the pressure of sunlight and forms a long, curving
tail that has a much more uniform appearance than the gas tail. The dust tail is
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pointed in the direction directly opposite the comet’s direction of motion, and can also
extend 108 km from the nucleus.

These various components of a comet are shown in the diagram, above (Fig. 8.3).

8.4 Types of Comets

Comets originate from two primary locations in the solar system. One class of comets, called
the long-period comets, have long orbits around the sun with periods of more than 200
years. Their orbits are random in shape and inclination, with long-period comets entering
the inner solar system from all different directions. These comets are thought to originate in
the Oort cloud, a spherical cloud of icy bodies that extends from ∼20,000 to 150,000 AU
from the Sun. Some of these objects might experience only one close approach to the Sun
and then leave the solar system (and the Sun’s gravitational influence) completely.

In contrast, the short-period comets have periods less than 200 years, and their orbits
are all roughly in the plane of the solar system. Comet Halley has a 76-year period, and
therefore is considered a short-period comet. Comets with orbital periods < 100 years do
not get much beyond Pluto’s orbit at their farthest distance from the Sun. Short-period
comets cannot survive many orbits around the Sun before their ices are all melted away. It
is thought that these comets originate in the Kuiper Belt, a belt of small icy bodies beyond
the large gas giant planets and in the plane of the solar system. Quite a few large Kuiper
Belt objects have now been discovered, including one (Eris) that is about the same size as
Pluto.

Figure 8.4: The Oort cloud.

8.5 The Impacts of Asteroids and Comets

Objects orbiting the Sun in our solar system do so at a variety of speeds that directly
depends on how far they are from the Sun. For example, the Earth’s orbital velocity is 30
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Figure 8.5: The Kuiper belt.

km/s (65,000 mph!). Objects further from the Sun than the Earth move more slowly, objects
closer to the Sun than the Earth move more quickly. Note that asteroids and comets near
the Earth will have space velocities similar to the Earth, but in (mostly) random directions,
thus a collision could occur with a relative speed of impact of nearly 60 km/s! How fast is
this? Note that the highest muzzle velocity of any handheld rifle is 1,220 m/s = 1.2 km/s.
Thus, the impact of any solar system body with another is a true high speed collision that
releases a large amount of energy. For example, an asteroid the size of a football field that
collides with the Earth with a velocity of 30 km/s releases as much energy as one thousand
atomic bombs the size of that dropped on Japan during World War II (the Hiroshima bomb
had a “yield” of 13 kilotons of TNT). Since the equation for kinetic energy (the energy of
motion) is K.E. = 1/2(mv2), the energy scales directly as the mass, and mass goes as the
cube of the radius (mass = density × Volume = density × R3). A moving object with ten
times the radius of another traveling at the same velocity has 1,000 times the kinetic energy.
It is this kinetic energy that is released during a collision.

8.6 Exercise #1: Creating Impact Craters

To create impact craters, we will be dropping steel ball bearings into a container filled with
ordinary baking flour. There are at least two different sizes of balls, there is one that is twice
as massive as the other. You will drop both of these balls from three different heights (0.5
meters, 1 meters, and 2 meters), and then measure the size of the impact crater that they
produce. Then on graph paper, you will plot the size of the impact crater versus the speed
of the impacting ball.

1. Have one member of your lab group take the meter stick, while another takes the
smaller ball bearing.

2. Take the plastic tub that is filled with flour, and place it on the floor.

3. Make sure the flour is uniformly level (shake or comb the flour smooth)

4. Carefully hold the meter stick so that it is just touching the top surface of the flour.
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5. The person with the ball bearing now holds the ball bearing so that it is located exactly
one half meter (50 cm) above the surface of the flour.

6. Drop the ball bearing into the center of the flour-filled tub.

7. Use the magnet to carefully extract the ball bearing from the flour so as to cause the
least disturbance.

8. Carefully measure the diameter of the crater caused by this impact, and place it in the
data table, below.

9. Repeat the experiment for heights of 1 meter and 2 meters using the smaller ball
bearing (note that someone with good balance might have to carefully stand on a chair
to get to a height of two meters!).

10. Now repeat the entire experiment using the larger ball bearing. Record all of the data
in the data table.

Height Crater diameter Crater diameter Impact velocity
(meters) (cm) Ball #1 (cm) Ball #2 (m/s)
0.5
1.0
2.0

Now it is time to fill in that last column: Impact velocity (m/s). How can we determine
the impact velocity? The reason the ball falls in the first place is because of the pull of the
Earth’s gravity. This force pulls objects toward the center of the Earth. In the absence of
the Earth’s atmosphere, an object dropped from a great height above the Earth’s surface
continues to accelerate to higher, and higher velocities as it falls. We call this the “accelera-
tion” of gravity. Just like the accelerator on your car makes your car go faster the more you
push down on it, the force of gravity accelerates bodies downwards (until they collide with
the surface!).

We will not derive the equation here, but we can calculate the velocity of a falling body
in the Earth’s gravitational field from the equation v = (2ay)1/2. In this equation, “y” is
the height above the Earth’s surface (in the case of this lab, it is 0.5, 1, and 2 meters). The
constant “a” is the acceleration of gravity, and equals 9.80 m/s2. The exponent of 1/2 means
that you take the square root of the quantity inside the parentheses. For example, if y = 3
meters, then v = (2 × 9.8 × 3)1/2, or v = (58.8)1/2 = 7.7 m/s.

1. Now plot the data you have just collected on graph paper. Put the impact velocity
on the x axis, and the crater diameter on the y axis. (10 points)
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8.6.1 Impact crater questions

1. Describe your graph, can the three points for each ball be approximated by a single
straight line? How do your results for the larger ball compare to that for the smaller ball? (3
points)

2. If you could drop both balls from a height of 4 meters, how big would their craters
be? (2 points)

3. What is happening here? How does the mass/size of the impacting body affect your
results. How does the speed of the impacting body affect your results? What have you just
proven? (5 points)

8.7 Crater Illumination

Now, after your TA has dimmed the room lights, have someone take the flashlight out and
turn it on. If you still have a crater in your tub, great, if not create one (any height more
than 1 meter is fine). Extract the ball bearing.

1. Now, shine the flashlight on the crater from straight over top of the crater. Describe
what you see. (2 points)

2. Now, hold the flashlight so that it is just barely above the lip of the tub, so that the
light shines at a very oblique angle (like that of the setting Sun!). Now, what do you see? (2
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points)

3. When is the best time to see fine surface detail on a cratered body, when it is noon
(the Sun is almost straight overhead), or when it is near “sunset”? [Confirm this at the
observatory sometime this semester!] (1 point)

8.8 Exercise #2: Building a Comet

In this portion of the lab, you will actually build a comet out of household materials. These
include water, ammonia, potting soil, and dry ice (CO2 ice). Be sure to distribute the work
evenly among all members of your group. Follow these directions: (10 points)

1. Use a freezer bag to line the bottom of your bucket.

2. Place a little less than 1 cup of water (this is a little less than 1/2 of a “Solo” cup!) in
the bag/bucket.

3. Add 3 spoonfuls of sand, stirring well. (NOTE: Do not stir so hard that you rip the
freezer bag lining!!)

4. Add 1 capful of ammonia.

5. Add 1 spoon of organic material (potting soil). Stir until well-mixed.

6. Your TA will place a block or chunk of dry ice inside a towel and crush the block with
the mallet and give you some crushed dry ice.

7. Add about 1 cup of crushed dry ice to the bucket, while stirring vigorously. (NOTE:
Do not stir so hard that you rip the freezer bag!!)

8. Continue stirring until mixture is almost frozen.

9. Lift the comet out of the bucket using the plastic liner and shape it for a few seconds
as if you were building a snowball (use gloves!).

10. If not a solid mass, add small amounts of water and keep working the “snowball” until
the mixture is completely frozen.
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11. Unwrap the comet once it is frozen enough to hold its shape.

8.8.1 Comets and Light

1. Observe the comet as it is sitting on a desk. Make some notes about its physical char-
acteristics, for example: shape, color, smell (5 points):

2. Now bring the comet over to the light source (overhead projector) and place it on top.
Observe, and then describe what happens to the comet (5 points):

8.8.2 Comet Strength

Comets, like all objects in the solar system, are held together by their internal strength.
If they pass too close to a large body, such as Jupiter, their internal strength is not large
enough to compete with the powerful gravity of the massive body. In such encounters, a
comet can be broken apart into smaller pieces. In 1994, we saw evidence of this when Comet
Shoemaker-Levy/9 impacted into Jupiter. In 1992, that comet passed very close to Jupiter
and was fragmented into pieces. Two years later, more than 21 cometary fragments crashed
into Jupiter’s atmosphere, creating spectacular (but temporary) “scars” on Jupiter’s cloud
deck.

Exercise: After everyone in your group has carefully examined your comet (make sure
to note its appearance, shape, smell, weight), it is time to say goodbye. Take a sample rock
and your comet, go outside, and drop them both on the sidewalk. What happened to each

99



Figure 8.6: The Impact of “Fragment K” of Comet Shoemaker-Levy/9 with Jupiter. Note
the dark spots where earlier impacts occurred.

object? (2 points)

8.8.3 Comet Questions

1. Draw a comet and label all of its components. Be sure to indicate the direction the
Sun is in, and the comet’s direction of motion. (5 points)

2. What are some differences between long-period and short-period comets? Does it make
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sense that they are two distinct classes of objects? Why or why not? (5 points)

3. If a comet is far away from the Sun and then it draws nearer as it orbits the Sun, what
would you expect to happen? (5 points)

4. Do you think comets have more or less internal strength than asteroids, which are
composed primarily of rock? [Hint: If you are playing outside with your friends in a
snow storm, would you rather be hit with a snowball or a rock?] (3 points)
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Date:

8.9 Take Home Exercise (35 points total)

Write-up a summary of the important ideas covered in this lab. Questions you may want to
consider are:

• How does the mass of an impacting asteroid or comet affect the size of an impact
crater?

• How does the speed of an impacting asteroid or comet affect the size of an impact
crater?

• Why are comets important to planetary astronomers?

• What can they tell us about the solar system?

• What are some components of comets and how are they affected by the Sun?

• How are comets different from asteroids?

Use complete sentences, and proofread your summary before handing it in.

8.10 Possible Quiz Questions

1. What is the main difference between comets and asteroids, and why are they different?

2. What are the Oort cloud and the Kuiper belt?

3. What happens when a comet or asteroid collides with the Moon?

4. How does weather affect impact features on the Earth?

5. How does the speed of the impacting body affect the energy of the collision?

8.11 Extra Credit (ask your TA for permission before attempting,
5 points)

On the 15th of February, 2013, a huge meteorite exploded in the skies over Chelyabinsk,
Russia. Write-up a small report about this event, including what might have happened if
instead of a grazing, or “shallow”, entry into our atmosphere, the meteor had plowed straight
down to the surface.
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9 Our Sun

9.1 Introduction

The Sun is a very important object for all life on Earth. The nuclear reactions which occur
in its core produce the energy which plants and animals need to survive. We schedule our
lives around the rising and setting of the Sun in the sky. During the summer, the Sun is
higher in the sky and thus warms us more than during the winter, when the Sun stays low in
the sky. But the Sun’s effect on Earth is even more complicated than these simple examples.

The Sun is the nearest star to us, which is both an advantage and a disadvantage for
astronomers who study stars. Since the Sun is very close, and very bright, we know much
more about the Sun than we know about other distant stars. This complicates the picture
quite a bit since we need to better understand the physics going in the Sun in order to com-
prehend all our detailed observations. This difference makes the job of solar astronomers in
some ways more difficult than the job of stellar astronomers, and in some ways easier! It’s
a case of having lots of incredibly detailed data. But all of the phenomena associated with
the Sun are occurring on other stars, so understanding the Sun’s behavior provides insights
to how other stars might behave.

Figure 9.1: A diagram of the various layers/components of the Sun, as well as the appearance
and location of other prominent solar features.

• Goals: to discuss the layers of the Sun and solar phenomena; to use these concepts
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in conjunction with pictures to deduce characteristics of solar flares, prominences,
sunspots, and solar rotation

• Materials: You will be given a Sun image notebook, a bar magnet with iron filings and
a plastic tray. You will need paper to write on, a ruler, and a calculator

9.2 Layers of the Sun

One of the things we know best about the Sun is its overall structure. Figure 9.1 is a
schematic of the layers of the Sun’s interior and atmosphere. The interior of the Sun is made
up of three distinct regions: the core, the radiative zone, and the convective zone. The core
of the Sun is very hot and dense. This is the only place in the Sun where the temperature
and pressure are high enough to support nuclear reactions. The radiative zone is the region
of the sun where the energy is transported through the process of radiation. Basically, the
photons generated by the core are absorbed and emitted by the atoms found in the radiative
zone like cars in stop and go traffic. This is a very slow process. The convective zone is
the region of the Sun where energy is transported by rising “bubbles” of material. This is
the same phenomenon that takes place when you boil a pot of water. The hot bubbles rise
to the top, cool, and fall back down. This gives the the surface of the Sun a granular look.
Granules are bright regions surrounded by darker narrow regions. These granules cover the
entire surface of the Sun.

The atmosphere of the Sun is also comprised of three layers: the photosphere, the chro-
mosphere, and the corona. The photosphere is a thin layer that forms the visible surface
of the Sun. This layer acts as a kind of insulation, and helps the Sun retain some of its
heat and slow its consumption of fuel in the core. The chromosphere is the Sun’s lower
atmosphere. This layer can only be seen during a solar eclipse since the photosphere is so
bright. The corona is the outer atmosphere of the Sun. It is very hot, but has a very low
density, so this layer can only be seen during a solar eclipse (or using specialized telescopes).
More information on the layers of the Sun can be found in your textbook.

9.3 Sunspots

Sunspots appear as dark spots on the photosphere (surface) of the Sun (see Figure 9.2).
They last from a few days to over a month. Their average size is about the size of the Earth,
although some can grow to many times the size of the Earth! Sunspots are commonly found
in pairs. How do these spots form?

The formation of sunspots is attributed to the Sun’s differential rotation. The Sun is
a ball of gas, and therefore does not rotate like the Earth, or any other solid object. The
Sun’s equator rotates faster than its poles. It takes roughly 25 days for material to travel
once around the equator, but about 35 days for it to travel once around near the north or
south poles. This differential rotation acts to twist up the magnetic field lines inside the
Sun. At times, the lines can get so twisted that they pop out of the photosphere. Figure 9.3
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Figure 9.2: A large group of Sunspots. The “umbra” is the darker core of a sunspot, while
the “penumbra” is its lighter, frilly edges.

illustrates this concept. When a magnetic field loop pops out, the places where it leaves and
re-enters the photosphere are cooler than the rest of the Sun’s surface. These cool places
appear darker, and therefore are called “sunspots”.

Figure 9.3: Sunspots are a result of the Sun’s differential rotation.

The number of sunspots rises and falls over an 11 year period. This is the amount of time
it takes for the magnetic lines to tangle up and then become untangled again. This is called
the Solar Cycle. Look in your textbook for more information on sunspots and the solar cycle.

9.4 Solar Phenomenon

The Sun is a very exciting place. All sorts of activity and eruptions take place in it and
around it. We will now briefly discuss a few of these interesting phenomena. You will be
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analyzing pictures of prominences during this lab.

Prominences are huge loops of glowing gas protruding from the chromosphere. Charged
particles spiral around the magnetic field lines that loop out over the surface of the Sun, and
therefore we see bright loops above the Sun’s surface. Very energetic prominences can break
free from the magnetic field lines and shoot out into space.

Flares are brief but bright eruptions of hot gas in the Sun’s atmosphere. These erup-
tions occur near sunspot groups and are associated with the Sun’s intertwined magnetic field
lines. A large flare can release as much energy as 10 billion megatons of TNT! The charged
particles that flares emit can disrupt communication systems here on Earth.

Another result of charged particles bombarding the Earth is the Northern Lights. When
the particles reach the Earth, they latch on to the Earth’s magnetic field lines. These lines
enter the Earth’s atmosphere near the poles. The charged particles from the Sun then excite
the molecules in Earth’s atmosphere and cause them to glow. Your textbook will have more
fascinating information about these solar phenomena.

9.5 Lab Exercises

There are three main exercises in this lab. The first part consists of a series of “stations” in
a three ring binder where you examine some pictures of the Sun and answer some questions
about the images that you see. Use the information that you have learned from lectures and
your book to give explanations for the different phenomena that you see at each station. In
the second exercise you will learn about magnetic fields using a bar magnet and some iron
filings. Finally, for those labs that occur during daylight hours (i.e., starting before 5 pm!),
you will actually look at the Sun using a special telescope to see some of the phenomena
that were detailed in the images in the first exercise of this lab (for those students in night-
time labs, arrangements might be made so as to observe the Sun during one of your lecture
sessions). During this lab you will use your own insight and knowledge of basic physics
and astronomy to obtain important information about the phenomena that we see on the
Sun, just as solar astronomers do. As with all of the other exercises in this lab manual, if
there is not sufficient room to write in your answers into this lab, do not hesitate to use
additional sheets of paper. Do not try to squeeze your answers into the tiny blank spaces
in this lab description if you need more space then provided! Don’t forget to SHOW ALL
OF YOUR WORK.

One note of caution about the images that you see: the colors of the pictures (especially
those taken by SOHO) are not true colors, but are simply colors used by the observatories’
image processing teams to best enhance the features shown in the image.
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9.5.1 Exercise #1: Getting familiar with the Size and Appearance of the Sun

Station 1: In this first station we simply present some images of the Sun to familiarize your-
self with what you will be seeing during the remainder of this lab. Note that this station has
no questions that you have to answer, but you still should take time to familiarize yourself
with the various features visible on/near the Sun, and get comfortable with the specialized,
filtered image shown here.

• The first image in this station is a simple “white light” picture of the Sun as it would
appear to you if you were to look at it in a telescope that was designed for viewing the
Sun. Note the dark spots on the surface of the Sun. These are “sunspots”, and are
dark because they are cooler than the rest of the photosphere.

• When we take a very close-up view of the Sun’s photosphere we see that it is broken
up into much smaller “cells”. This is the “solar granulation”, and is shown in picture
#2. Note the size of these granules. These convection cells are about the size of New
Mexico!

• To explore what is happening on the Sun more fully requires special tools. If you have
had the spectroscopy lab, you will have seen the spectral lines of elements. By choosing
the right element, we can actually probe different regions in the Sun’s atmosphere. In
our first example, we look at the Sun in the light of the hydrogen atom (“H-alpha”).
This is the red line in the spectrum of hydrogen. If you have a daytime lab, and the
weather is good, you will get to see the Sun just like it appears in picture #3. The
dark regions in this image is where cool gas is present (the dark spot at the center is
a sunspot). The dark linear, and curved features are “prominences”, and are due to
gas caught in the magnetic field lines of the underlying sunspots. They are above the
surface of the Sun, so they are a little bit cooler than the photosphere, and therefore
darker.

• Picture #4 shows a “loop’ prominence located at the edge (or “limb”) of the Sun (the
disk of the Sun has been blocked out using a special telescope called a “coronograph”
to allow us to see activity near its limb). If the Sun cooperates, you may be able to
see several of these prominences with the solar telescope. You will be returning to this
image in Exercise #2.

Station 2: Here are two images of the Sun taken by the SOHO satellite several days
apart (the exact times are at the top of the image). (8 points)

• Look at the sunspot group just below center of the Sun in image 1, and then note
that it has rotated to the western (right-hand) limb of the Sun in image 2. Since the
sunspot group has moved from center to limb, you then know that the Sun has rotated
by one quarter of a turn (90◦).

• Determine the precise time difference between the images. Use this information plus
the fact that the Sun has turned by 90 degrees in that time to determine the rotation
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rate of the Sun. If the Sun turns by 90 degrees in time t, it would complete one
revolution of 360 degrees in how much time?

• Does this match the rotation rate given in your textbook or in lecture? Show your
work.

In the second photograph of this station are two different images of the Sun: the one on
the left is a photo of the Sun taken in the near-infrared at Kitt Peak National Observatory,
and the one on the right is a “magnetogram” (a picture of the magnetic field distribution
on the surface of the Sun) taken at about the same time. (Note that black and white areas
represent regions with different polarities, like the north and south poles of the bar magnet
used in the second part of this lab.) (7 points)

• What do you notice about the location of sunspots in the photo and the location of the
strongest magnetic fields, shown by the brightest or darkest colors in the magnetogram?

• Based on this answer, what do you think causes sunspots to form? Why are they
dark?

Station 3: Here is a picture of the corona of the Sun, taken by the SOHO satellite in
the extreme ultraviolet. (An image of the Sun has been superimposed at the center of the
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picture. The black ring surrounding it is a result of image processing and is not real.) (10
points)

• Determine the diameter of the Sun, then measure the minimum extent of the corona
(diagonally from upper left to lower right).

• If the photospheric diameter of the Sun is 1.4 million kilometers (1.4 x 106 km), how
big is the corona? (HINT: use unit conversion!)

• How many times larger than the Earth is the corona? (Earth diameter=12,500 km)

Station 4: This image shows a time-series of exposures by the SOHO satellite showing an
eruptive prominence. (15 points)

• As in station 3, measure the diameter of the Sun and then measure the distance of
the top of the prominence from the edge of the Sun in the first (earliest) image. Then
measure the distance of the top of the prominence from the edge of the Sun in the last
image.
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• Convert these values into real distances based on the linear scale of the images. Re-
member the diameter of the Sun is 1.4 x 106 kilometers.

• The velocity of an object is the distance it travels in a certain amount of time (vel=dist/time).
Find the velocity of the prominence by subtracting the two distances and dividing the
answer by the amount of time between the two images.

• In the most severe of solar storms, those that cause flares, and “coronal mass ejections”
(and can disrupt communications on Earth), the material ejected in the prominence
(or flare) can reach velocities of 2,000 kilometers per second. If the Earth is 150 x
106 kilometers from the Sun, how long (hours or days) would it take for this ejected
material to reach the Earth?

Station 5: This is a plot of where sunspots tend to occur on the Sun as a function of latitude
(top plot) and time (bottom plot). What do you notice about the distribution sunspots?
How long does it take the pattern to repeat? What does this length of time correspond to?
(3 points)
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9.5.2 Exercise #2: Exploring Magnetic Fields

The magnetic field of the Sun drives most of the solar activity. In this subsection we compare
the magnetic field of sunspots to that of a bar magnet. During this exercise you will be using
a plastic tray in which you will sprinkle iron filings (small bits of iron) to trace the magnetic
field of a bar magnet. This can be messy, so be careful as we only have a finite supply of
these iron filings, and the other lab subsections will need to re-use the ones supplied to you.

• First, let’s explore the behavior of a compass in the presence of a magnetic field. Grab
the bar magnet and wave the “north pole” (the red end of the bar magnet with the
large “N”) of the magnet by the compass. Which end of the compass needle (or arrow)
seems to be attracted by the north pole of the magnet? (1 point)

• Ok, reverse the bar magnet so the south pole (white end) is the one closest to the
compass. Which end of the compass needle is attracted to the south pole of the bar
magnet? (1 point)

• The compass needle itself is a little magnet, and the pointy, arrow end of the compass
needle is the north pole of this little magnet. Knowing this, what does this say about
magnets? Which pole is attracted to which pole (and vice versa)? (1 point)

• As you know, a compass can be used to find your way if you are lost because the
needle always points towards the North Pole of the Earth. The Earth has its own
magnetic field generated deep in its molten iron core. This field acts just like that of a
bar magnet. But given your answer to the last question, and the fact that the “north
pole” of the compass needle points to the North Pole of the Earth, what is the actual
“polarity” of the Earth’s “magnetic North” pole? (1 point)

We have just demonstrated the power of attraction of a magnetic field. What does a mag-
netic field look like? In this subsection we use some iron filings, a plastic tray, and the bar
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magnet to explore the appearance of a magnetic field, and compare that to what we see on
the Sun.

• Place the bar magnet on the table, and center the plastic tray on top of the bar magnet.
Gently sprinkle the iron filings on to the plastic tray so that a thin coating covers the
entire tray. Sketch the pattern traced-out by the magnetic filings below, and describe
this pattern. (2 points)

• The iron filings trace the magnetic field lines of the bar magnet. The field lines sur-
round the magnet in all dimensions (though we can only easily show them in two
dimensions). Your TA will show you a device that has a bar magnet inside a plastic
case to demonstrate the three dimensional nature of the field. Compare the pattern of
the iron filings around the bar magnet to the picture of the sunspot shown in Figure
9.4. They are similar! What does this imply about sunspots? (3 points)
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Figure 9.4: The darker region of this double sunspot is called the “umbra”, while the less
dark, filamentary region is called the “penumbra”. For this sunspot, one umbra has a “North
polarity”, while the other has a “South polarity”.

• Now, lets imagine what a fully three dimensional magnetic field looks like. The pattern
of the iron filings around the bar magnet would also exist into the space above the bar
magnet, but we cannot suspend the iron filings above the magnet. Complete Figure
9.5 by drawing-in what you imagine the magnetic field lines look like above the bar
magnet. (3 points)

Figure 9.5: Draw in the field lines above this bar magnet.

• Compare your drawing, above, to the image of the loop prominence seen in station #1
of Exercise #1. What are their similarities—imagine if the magnetic field lines emitted
light, what would you expect to see? (2 points)
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If a sunspot pair is like a little bar magnet on the surface of the Sun, the field extends up into
the atmosphere, and along the magnetic field charged particles can collect, and we see light
emitted by these moving particles (mostly ionized hydrogen). Note that we do not always
see the complete set of field lines in prominences because of the lack of material high in the
Sun’s atmosphere—but the bases of the prominences are visible, and are located just above
the sunspot.

*************If the weather is clear, and your TA is ready, you can proceed to Exercise
#3 to look at the Sun with a special solar telescope.************

9.5.3 Exercise #3: Looking at the Sun

The Sun is very bright, and looking at it with either the naked eye or any optical device is
dangerous—special precautions are necessary to enable you to actually look at the Sun. To
make the viewing safe, we must eliminate 99.999% of the light from the Sun to reduce it to
safe levels. In this exercise you will be using a very special telescope designed for viewing the
Sun. This telescope is equipped with a hydrogen light filter. It only allows a tiny amount
of light through, isolating a single emission line from hydrogen (“H-alpha”). In your lecture
session you will learn about the emission spectrum of hydrogen, and in the spectroscopy
lab you get to see this red line of hydrogen using a spectroscope. Several of the pictures
in Exercise #1 were actually obtained using a similar filter system. This filter system gives
us a unique view of the Sun that allows us to better see certain types of solar phenomena,
especially the “prominences” you encountered in Exercise #1.

• In the “Solar Observation Worksheet” below, draw what you see on and near the Sun
as seen through the special solar telescope. (8 points)

Note: Kitt Peak Vacuum Telescope images are courtesy of KPNO/NOAO. SOHO Extreme

Ultraviolet Imaging Telescope images courtesy of the SOHO/EIT consortium. SOHO Michelson

Doppler Imager images courtesy of the SOHO/MDI consortium. SOHO is a project of international

cooperation between the European Space Agency (ESA) and NASA.
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9.6 Summary (35 points)

Please summarize the important concepts discussed in this lab.

• Discuss the different types of phenomena and structures you looked at in the lab

• Explain how you can understand what causes a phenomenon to occur by looking at
the right kind of data

• List the six layers of the Sun (in order) and give their temperatures.

• What causes the Northern (and Southern) Lights, also known as “Aurorae”?

Use complete sentences and, proofread your summary before turning it in.

Possible Quiz Questions
1) What are sunspots, and what leads to their formation?
2) Name the three interior regions of the Sun.
3) What is differential rotation?
4) What is the “photosphere”?
5) What are solar flares?

9.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Look-up a plot of the number of sunspots versus time that spans the last four hundred years.
For about 50 years, centered around 1670, the Sun was unusually “quiet”, in that sunspots
were rarely seen. This event was called the “Maunder minimum” (after the discoverer). At
the same time as this lack of sunspots, the climate in the northern hemisphere was much
colder than normal. The direct link between sunspots and the Earth’s climate has not
been fully established, but there must be some connection between these two events. Near
1800 another brief period of few sunspots, the “Dalton minimum” was observed. Looking
at recent sunspot numbers, some solar physicists have suggested the Sun may be entering
another period like the Dalton minimum. Search for the information these scientists have
used to make this prediction. Describe the climate in the northern hemisphere during the
last Dalton minimum. Are there any good ideas on the link between sunspot number and
climate that you can find?
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10 The History of Water on Mars

Scientists believe that for life to exist on a planet (or moon), there must be liquid water
available. Thus, one of the priorities for NASA has been the search for water on other objects
in our solar system. Currently, these studies are focused on three objects: Mars, Europa (a
moon of Jupiter), and Enceladus (a moon of Saturn). It is believed that both Europa and
Enceladus have liquid water below their surfaces. Unfortunately, it will be very difficult to
find out if their subsurface oceans harbor lifeforms, as they are below very thick sheets of
ice. Mars is different. Mars was discovered to have polar ice caps more than 350 years ago.
While much of the surface ice of these polar caps is “dry ice”, frozen carbon dioxide, we
believe there is a large quantity of frozen water in the polar regions of Mars.

Mars has many similarities to Earth. The rotation period of Mars is 24 hours and 37
minutes. Martian days are just a little longer than Earth days. Mars also has seasons that
are similar to those of the Earth. Currently, the spin axis of Mars is tilted by 25◦ to its
orbital plane (Earth’s axis is tilted by 23.5◦). Thus, there are times during the Martian year
when the Sun never rises in the northernmost and southernmost parts of the planet (winter
above the “arctic circles”). And times of the year in these same places where the Sun never
sets (northern or southern summer). Mars is also very different from the Earth: its radius
is about 50% that of Earth, the average surface temperature is very cold, −63 ◦C (= −81
◦F), and the atmospheric pressure at the surface is only 1% that of the Earth. The low
temperatures and pressures mean that it is hard for liquid water to currently exist on the
surface of Mars. Was this always true? We will find that out today.

In this lab you will be examining a notebook of images of Mars made by recent space
probes and looking for signs of water. You will also be making measurements of some valleys
and channels on Mars to enable you to distinguish the different surface features left by
small, slow flowing streams and large, rapid outflows. You will calculate the volumes of
water required to carve these features, and consider how this volume compares with other
bodies of water.

10.1 Water Flow Features on Mars

The first evidence that there was once water on Mars was revealed by the NASA spacecraft
Mariner 9. Mariner 9 reached Mars in 1971, and after waiting-out a global dust storm that
obscured the surface of Mars, started sending back images in December of that year. Since
that time a flotilla of spacecraft have been investigating Mars, supplying insight into the
history of water there.
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Figure 10.1: A dendritic drainage pattern in Yemen (left), and an anastomosing drainage in
Alaska (right).

10.1.1 Warrego Valles

The first place we are going to visit is called “Warrego Valles”, where the “Valles” part of
its name indicates valleys (or canyons). The singular of Valles is Vallis. The location of
Warrego is indicated by the red dot on the map of Mars that is the first image (“Image #1”)
in the three ring binder.

The following set of questions refer to the images of Warrego Valles. Image #2 is a wide
view of the region, while Image #3 is a close-up.

1. By looking at the morphology, or shape, of the valley, geologists can tell how the valley
was formed. Does this valley system have a dendritic pattern (like the veins in a leaf)
or an anastomosing pattern (like an intertwined rope)? See Figure 10.1. (1 point)

2. Overlay a transparency film onto the close-up image. Trace the valley pattern onto
the transparency. How does a valley like this form? Do you think it formed slowly
over time, or quickly from a localized water source? Why? (3 points)
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3. Now, on the wide-field view, trace the boundary between the uplands and plains on
your close-up overlay (the transparency sheet) and label the Uplands and the Plains.
Is Warrego located in the uplands or on the plains? (2 points)

4. Which terrain is older? Recall that we can use crater counting to help determine the
age of a surface, so let’s do some crater counting. Overlay the transparency sheet on
the wide-view image. Pick out two square regions on the wide view image (#2), each
5 cm × 5 cm. One region should cover the smooth plains (“Icaria Planum”) and the
other should cover the upland region. Draw these two squares on the transparency
sheet. Count all the impact craters greater than 1 millimeter in diameter within each
of the two squares you have outlined. Write these numbers below, with identifications.
Which region is older? What does this exercise tell you about when approximately (or
relatively) Warrego formed? (5 points)

5. To figure out how much water was required to form this valley, we first need to estimate
its volume. The volume of a rectangular solid (like a shoebox) is equal to ` × w × h,
where ` is the length of the box, h is the height of the box, and w is the width. We
will approximate the shape of the valley as one long shoebox and focus only on the
main valley system. Use the close-up image for this purpose.

First, we need to add up the total length of all the branches of the valley. Note that
in the close-up image there are two well-defined valley systems. A more compact one
near the right edge, and the bigger one to the left of that. Let’s concentrate on the
bigger one that is closer to the middle of the image. Measure the length, in millime-
ters, of each branch and the main trunk. Be careful not to count the same length
twice. Sometimes it is hard to tell where each branch ends. You need to use your own
judgment and be consistent in the way you measure each branch. Now add up all your
measurements and convert the sum to kilometers. In this image 1 mm = 0.5 km. What
is the total length ` of the valley system in kilometers? Show your work. (3 points)
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6. Second, we need to find the average width of the valley. Carefully measure the width
of the valley (in millimeters) in several places. What is the average width? Convert
this to kilometers. Show your work. (2 points)

7. Finally, we need to know the depth. It is hard to measure depths from photographs,
so we will make an estimate. From other evidence that we will not discuss here, the
depth of typical Martian valleys is about 200 meters. Convert this to kilometers. (1
point)

8. Now find the total valley volume in km3, using the relation V = `×w× h. This is the
amount of sediment and rocks that was removed by water erosion to form this valley.
We do not know for sure how much water was required to remove each cubic kilometer,
but we can guess. Let’s assume that 100 km3 of water was required to erode 1 km3 of
Mars. How much water was required to form Warrego Valles? Show your work. (5
points)

Image #4 is a recent image of one small “tributary” of the large valley network you have
just measured (it is the leftmost branch that drains into the big valley system you explored).
In this image the scientists have made identifications of a number of features that are much
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too small to see in image #3. Note that these researchers traced the valley network for this
tributary and note where dust has filled-in some of the valley, or where “faults”, cracks in the
crust of the planet (orange line segments), have occurred. In addition, in the drawing on the
right the dashed circles locate very old craters that have been eroded away. Using all of this
information, you can begin to make good estimates of the age, and the sequences of events.
Near the bottom they note a “crater with lobate ejecta that postdates valleys.” This crater,
which is about 2 km in diameter, was created by a meteorite impact that occurred after the
valley formed. By doing this all along all of the tributaries of the Warrego Valles the age of
this feature can be estimated. Ansan & Mangold (2005) conclude that the Warrego valley
network began forming 3.5 billion years ago, from a period of rain and snow that may have
lasted for 500 million years.

Clean-off transparency for the next section!

10.1.2 Ares and Tiu Valles

We now move to a morphologically different site, the Ares and Tiu Valles. These valleys are
found near the equator of Mars, in the “Margaritifer Terra”. This region can be found in
the upper right quadrant of image #5 and is outlined in red. Note that the famous “Valles
Marineris”, the “grand canyon” of Mars (which dwarfs our Grand Canyon), is connected to
the Margaritifer Terra by a broad, complicated canyon. In the close up, image #6, the two
valles are identified (ignore the numbered white boxes, as they are part of a scientific study
of this region). In this false-color image, elevation is indicated where the highest features
are in white and brown, and the lowest features are pale green.

The next set of questions refer to Ares and Tiu Valles. On the wide scale image, the spot
where the Mars Pathfinder spacecraft landed is indicated. Can you guess why that particular
spot was chosen?

9. First, which way did the water flow that carved the Ares and Tiu Valles? Did water
flow south-to-north, or north-to-south? How did you decide this? [Note that the
latitude is indicated on the right hand side of image #6.] (2 points)

10. In our first close-up image (#7), there are two “teardrop islands”. These two features
can be found close to the “l” in the Pathfinder landing site label in image #6. There
are other features with the same shape elsewhere in the channel. In image #8, we
provide a wide field view of the “flood plains” of Tiu and Ares centered on the two
teardrop islands of image #7. Lay the transparency on this image and make a sketch of
the pattern of these channels. Now add arrows to show the path and direction
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the flowing water took. Look at the pattern of these channels. Are they dendritic
or anastomosing? (3 points)

11. Now we want to get an idea of the volume of water required to form Ares Valles.
Measure the length of the channel from the top end of the biggest “island” above the
Pathfinder landing site (note there are two islands here, a smaller one with a deep
crater, and a bigger one with a shallow crater. We want you to measure the channel
that goes by this smaller island on the right side and to the left of the big island, and
the channel that goes around the bigger island on the right to where they both join-up
again at the top of this big island) to the bottom right corner of the image. In this
image, 1 mm = 10 km. What is the total length of these channels? Show your work
(3 points)

12. Measure the channel width in several places and find the average width. On average,
how wide is the channel in km? Show your work (2 points)

13. The average depth is about 200 m. How much is that in km? (1 point)

14. Now multiply your answers (in units of km) to find the volume of the channel in
km3. Use the same ratio of water volume to channel volume that we used in Question
3 to find the volume of water required to form the channel. Lake Michigan holds 5,000
km3 of water, how does it compare to what you just calculated? Show your work. (4
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points)

15. Obviously, the Ares and Tiu Valles formed in a different fashion than Warrego. We
now want to examine the feature named “Hydaspis Chaos” in image #6. This feature
“drains into” the Tiu Vallis. In image #9, we present a wide view image of this feature.
In image #10, we show a close up of a small part of Hydaspis. Why do you think such
features were given the name “Chaos” regions? (2 points)

16. Scientists believe that Chaos regions are formed by the sudden release of large amounts
of groundwater (or, perhaps, the sudden melting of ice underneath the surface), causing
massive, and rapid flooding. Does such an idea make sense to you? Why? What
evidence for this hypothesis is present in these images to support this idea? (4 points)

17. In image #11 is a picture taken at the time of the disembarkation of the little Pathfinder
rover (named “Sojourner”) as it drove down the ramp from its lander. Is the surround-
ing terrain consistent with its location in the flood plain of Ares Vallis? Why/why not?
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(3 points)

18. Recent research into the age of the Ares and Tiu Valles suggest that, while they began
to form around 3.6 billion years ago (like Warrego), water still flowed in these channels
as recently as 2.5 billion years ago. Thus, the flood plains of Ares and Tiu are much
younger than Warrego. Do you agree with this assessment? How did you arrive at this
conclusion? (4 points)

19. You have now studied Warrego and Ares Valles up close. Compare and contrast the
two different varieties of fluvial (water-carved) landforms in as many ways
as you can think of (at least three!). Do you think they formed the same way?
How does the volume of water required to form Ares Valles compare to the volume of
water required to form Warrego Valles? (5 points)
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10.2 The Global Perspective

In image #12 is a topographic map of Mars that is color-coded to show the altitude of the
surface features where blue is low, and white is very high. Note that the northern half of
Mars is lower than the southern half, and the North pole is several km lower than the South
pole. The Ares and Tiu Valles eventually drain into the region labeled “Chryse Planitia”
(longitude 330◦, latitude 25◦).

20. If there was an abundance of water on Mars, what would the planet look like? How
might we prove if this was feasible? For example, scientists estimate the age of the
northern plains as being formed between 3.6 and 2.5 billion years ago. How does this
number compare with the ages of the Ares and Tiu Valles? Could they be one source
of water for this ocean? (5 points)

One way to test the hypothesis that the northern region of Mars was once covered by an
ocean is to look for similarities to Earth. Over the history of Earth, oceans have covered
large parts of the current land masses/continents (as one once covered much of New Mexico).
Thus, there could be ancient shoreline features from past Earth oceans that we can compare
to the proposed “shoreline” areas of Mars. In image #13 is a comparison of the Ebro river
basin (in Spain) to various regions found on Mars that border the northern plains. The Ebro
river basin shown in the upper left panel was once below sea level, and a river drained into
an ancient ocean. The sediment laid down by the river eventually became sedimentary rock,
and once the area was uplifted, the softer material eroded away, leaving ridges of rock that
trace the ancient river bed. The other three panels show similar features on Mars.

If the northern part of Mars was covered by an ocean, where did the water go? It might
have evaporated away into space, or it could still be present frozen below the surface. In
2006, NASA sent a spacecraft named Phoenix that landed above the “arctic circle” of Mars
(at a latitude of 68◦ North). This lander had a shovel to dig below the surface as well as
a laboratory to analyze the material that the shovel dug up. Image #14 shows a trench
that Phoenix dug, showing sub-surface ice and how chunks of ice (in the trench shadow)
evaporated (technically “sublimated”, ice changing directly into gas) over time. The slow
sublimation meant this was water ice, not carbon dioxide ice. This was confirmed when
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water was detected in the samples delivered to the onboard laboratory.

21. Given all of this evidence presented in the lab today, Mars certainly once had abundant
surface water. We still do not know how much there was, how long it was present on the
surface, or where it all went. But explain why discovery of large amounts of subsurface
water ice might be important for astronauts that could one day visit Mars (5 points)
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10.3 Take Home Exercise (35 points total)

Answer the following questions on a separate sheet of paper, and turn it in with the rest of
your lab.

1. What happened to all of the water that carved these valley systems? We do not see
any water on the surface of Mars when we look at present-day images of the planet,
but if our interpretation of these features is correct, and your calculated water volumes
are correct (which they probably are), then where has all of the water gone? Discuss
two possible (probable?) fates that the water might have experienced. Think about
discussions we have had in class about the atmospheres of the various planets and
what their fates have been. Also think about how Earth compares to Mars and how
the water abundances on the two planets now differ. (20 points)

2. Scientists believe that life (the first, primitive, single cell creatures) on Earth began
about 1 billion years after its formation, or 3.5 billion years ago. Scientists also believe
that liquid water is essential for life to exist. Looking at the ages and lifetimes of the
Warrego, Ares and Tiu Valles, what do you think about the possibility that life started
on the planet Mars at the same time as Earth? What must have Mars been like at
that time? What would have happened to this life? (15 points)

10.4 Possible Quiz Questions

1. Is water an important erosion process on Mars?

2. What does “dendritic” mean?

3. What does “anastomosing” mean?
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10.5 Extra Credit (ask your TA for permission before attempting,
5 points)

In this lab you have found that dendritic and anastomosing “river” patterns are found on
Mars, suggesting there was free flowing water at some time in Mars’ history. Use web-based
resources to investigate our current ideas about the history of water on Mars. Then find
images of both dendritic and anastomosing features on the Earth (include them in your
report). Describe where on our planet those particular patterns were found, and what type
of climate exists in that part of the world. What does this suggest about the formation of
similar features on Mars?
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11 Paleoclimate

11.1 Introduction

While the gravitational force on the Earth is dominated by the force of gravity between the
Earth and the Sun, other bodies in the Solar System affect the orbit of the earth in small
ways, leading to some variations in orbital parameters over time. Given that the orbital
parameters of planets can have an effect on climate, changes in the orbital parameters
can lead to climate changes over long periods of time.

In this lab, we will investigate several effects on the Earth’s orbital parameters over time,
and see how, together, they are expected to lead to variations in Earth’s climate.

We will also learn about how scientists can measure the past climate of the Earth uses
samples of ice that have accumulated over hundreds of thousands of years. We will see
whether the predictions of climate change from the changes in orbital parameters are matched
by the climate record.

Finally, we will consider recent changes in climate and compare them to
historical changes.

Before we begin, let’s review the timeline of the Earth’s history, which is shown graphi-
cally in Figure 11.1 The Earth was formed, along with the Sun, about 4.5 billion years ago.
The simplest forms of life arose about 2-4 billion years ago. Abundant life on Earth started
about 0.5 billion years ago (500 million years). Dinosaurs disappeared about 65 million years
ago. The first homo sapiens appeared about 200 thousand years ago (=0.2 million years =
0.0002 billion years!).

Figure 11.1: A life timeline of planet Earth starting with the Ice Age.

129



11.2 Milankovich Cycles

Changes in the orbital parameters of Earth are often known as Milankovich cycles. Read
about these at the following two sites:

• https://earthobservatory.nasa.gov/features/MilankovitchUse this link to find out who
Milutin Milankovitch was.

• https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-
climate/Use this link to read about orbital cycles and their role in Earth’s climate

• Question 1 Define the following terms in your own words: (3 Points)

– eccentricity

– obliquity (or tilt)

– precession

Let’s investigate how variations in these parameters are expected to lead to climate
changes on Earth.

Go to http://cimss.ssec.wisc.edu/wxfest/Milankovitch/earthorbit.htmlthe Earth Orbit
cimss link provided by your TA.

Notes on using this simulator:

• The red and gray buttons at the bottom can be turned on and off. Red is on; gray
is off. In some cases, multiple buttons can be selected at the same time, such as tilt,
precession and eccentricity.

• The yellow triangle on the graph on the side can be adjusted to move around in time.

Click on Orbit and Faster Orbit, as well as Top View and Oblique View to see how the
system works. Also drag the yellow arrow on the chart up and down.
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Click on the button Top View. You should now be able to view the orbit of the earth
from above. Note where in the orbit the Earth is closest to the Sun (perihelion) and where
it is farthest (aphelion),

• Question 2 At what time of the year is the Earth the farthest from the Sun? What
season is that in the northern hemisphere? What can you infer about the importance
(2 points) of distance from the Sun on climate at the current time?

Click on the button Oblique View. You should now be able to view the tilt of the earth
on its axis as it rotates around the sun.

• Question 3 Describe the direction of the tilt of the N pole of the Earth’s rotation axis
at aphelion. (*Hint: Using the Season Lock button may be useful.) (2 points)

• Question 4 Describe the direction of the tilt at perihelion. (2 points)

Select the Eccentricity button and go to Top View. Drag the yellow arrow up and down
and make note of any changes you see.

• Question 5 How do you think eccentricity could impact climate? (2 points)

• Question 6 The predicted effects on temperature show a regular spacing in time.
What is the approximate amount of time for each cycle (the time between successive
peaks in the purple line)? (2 points)

Unselect the Eccentricity button and click on Precession. Drag the yellow arrow up and
down while you are in the ”Top View.” Do the same for Oblique View. Make a note of any
changes you see while moving the yellow arrow while in Oblique View and Top View. (Note,
you might want to start off moving the yellow arrow slowly, paying attention to the Earth).

• Question 7 From this investigation, describe what you think Precession means. How
do you think precession could impact climate? (2 points)

• Question 8 The predicted effects on temperature show a regular spacing in time.
What is the approximate amount of time for each cycle (the time between successive
peaks in the purple line)? (2 points)
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Unselect the Precession button and click on Tilt. Drag the yellow arrow up and down
while in Top view and Oblique View, make note of any changes you see.

• Question 9 What is the approximate amount of time for each tilt cycle (the time
between successive peaks in the purple line)?

(2 points)

Collectively, the natural variations in these three parameters are called the
Milankovitch Cycles. To see the combined effect of all three cycles, click on Eccentricity,
Precession and Tilt at the same time. Note the Cycle indicated by the purple line that you
see in the right-hand graph. It is a combination of all three effects, and predicts the change
in temperature coming from the combined effect of the different orbital parameter variations.

• Question 10 In your own words, explain how the tilt of the earth and its orbit
determine the amount of solar radiation we receive. (2 points)

11.3 Ice cores and past climate record

The Vostok ice core was the result of a collaborative ice-drilling project between Russia
and the U.S. in 1998. The core was drilled at the Russian station named Vostok in East
Antarctica and produced the deepest ice core ever recovered. It reached a depth of 3,623
meters and the trapped air in the ice reveals changes in atmospheric composition of trace
gases, which can be used to study temperatures in the past as well as the amount of certain
gases in the Earth’s atmosphere in the past. The deeper the ice core goes, the further back
in time we are able to examine. In total, there was about 420,000 years worth of data that
was able to be provided from the Vostok ice cores.

To learn more about ice cores:
https://www.youtube.com/watch?v=8BgD9xul16gWatch the Ice Core Video Link sent by
your TA

• Question 11 What does each layer of an ice core represent? (Select one of the follow-
ing.) (2 points)

1. a different atmospheric gas

2. a different year of weather and snow

3. a different glacier

Age is calculated in two different ways within an ice core. The ice age is calculated from
an analysis of annual layers in the top part of the core, and using an ice flow model for
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the bottom part (the details of which are beyond the scope of this unit). The gas age data
accounts for the fact that gas is only trapped in the ice at a depth well below the surface
where the pores close up. The following is a plot of both types of ages as a function of depth
below the surface.

Figure 11.2: Note, the line on top is the ?ice age? line while the line on bottom is the ?gas
age? line.

• Question 12 What is the gas age at a depth of 500 meters? (2 points)

• Question 13 At what depth in the ice core is the ice age closest to 100,000 years? (2
points)

• Question 14 Based on what you read, why is there is difference between the gas age
and the ice age? (2 points)

The maximum amount of moisture that air can hold drops with decreasing temperatures.
When humid air cools, the water molecules will condensate to form precipitation. Heavier
isotopes (atoms with an extra neutron) have a slightly higher tendency to condensate, so
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humid air gradually loses relatively more and more of the heavier water molecules. Every
time precipitation forms, the air mass becomes more depleted in heavy isotopes. During
cold conditions (e.g., during winter or in a cold climatic period), the air masses arriving in
over ice sheets have cooled more and have formed more precipitation, which means that the
remaining vapor is more depleted in heavy isotopes. Measuring the abundance of different
isotopes can be used as a proxy for temperature.

The following is a plot of the derived temperature vs age:

Figure 11.3: Plot of the derived temperature vs age.

• Question 15 Approximately how long ago did the maximum temperature occur? (2
points)

• Question 16 Approximately how long ago did the minimum temperature occur? (2
points)

11.4 Relation of paleoclimate to orbital parameter variations

Milankovitch found that there are seasonal and latitudinal variations in the amount of solar
radiation the earth receives. We have seen that it is possible to measure the past climate
of the Earth over the past several hundred thousand years. Let’s see whether the observed
climate changes match up with the predicted ones from orbital parameter variations.
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Go back to http://cimss.ssec.wisc.edu/wxfest/Milankovitch/earthorbit.htmlthe cimss link
for Earth’s Orbit

Turn off (grey) all of the orbital parameters (eccentricity, tilt, precession). Turn on (red)
the Vostok Ice Core button to plot a green line that represents Earth’s recent temperature
fluctuations. Note that the data here go back about 400,000 years, while the data we used
in the last section only go back about 160,000 years. Can you match up the last graph with
the data shown by the green line?

• Question 17 Are present day temperatures the warmest we have ever experienced in
the last 400,000 years? (2 points)

Click on the Eccentricity box on the bottom of the screen. This will produce a purple
line on the Vostok ice core graph.

• Questions 18 Does the shape of the Earth’s orbit by itself correlate well with the
observed temperature record? (2 points)

Unclick the Eccentricity box on the bottom of the screen. Click on the Precession box
on the bottom of the screen to produce another purple line on the Vostok ice core graph.

• Question 19 Does the precession of the Earth’s rotation axis by itself correlate well
with the observed temperature record? (2 points)

Unclick the Precession box on the bottom of the screen. Click on the Tilt box on the
bottom of the screen. This will produce a purple line on the Vostok ice core graph.

• Question 20 Does the tilt of the Earth’s rotation axis by itself correlate well with the
observed temperature record? (2 points)

Experiment with combining multiple effects of tilt, eccentricity, and precession.

• Question 21 Which combination of eccentricity, tilt, and precession mostly closely
matches the temperatures over the last 400,000 years as inferred from the ice cores?
(2 points)

The Milankovitch Theory that cyclical variations in three elements of Earth-sun geometry
combine to produce variations in the amount of solar energy that reaches Earth explains past
climates. The Vostok ice core data corroborates this theory.
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11.5 Recent climate changes

Recent studies show that the earth is warming up, for example, as demonstrated by the
worldwide climates stripe shown in Figure 11.4 that we have seen before.

Figure 11.4: Climate stripes for all countries, showing warming around the globe over the
past century, which is a rapid change that we have not seen before.

We will demonstrate that this warming is unlike any warming seen in the
climate record.

To do this, we will use the link -
https://applets.kcvs.ca/HistoricClimateTrends/HistoricalTemperatures.htmlFor Historical Tem-
peratures provided by your TA

Historic Climate Trends Learning Tool to measure the rate of current warming and com-
pare it to the rate of past warming episodes. After you open the tool, you should see various
options at the bottom of the graph: Temperature, CO2, N2O, Methane, Trendlines, and
lines. If the word / box is highlighted in blue, that means its is turned on. If Temperature
is not turned on already, click on Temperature to view past temperatures. If you don’t see
anything, make sure that trendlines and lines are turned on. You can zoom in on a region
of data by clicking on the graph and dragging across the range you want to see. To reset to
the full time range, use the Reset item at the top.
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• Question 22 Find a region where you think the temperature has risen the fastest.
What range of times did you choose to measure the slope over? (2 points)

Zoom in on this region. To measure the rate of temperature change, we will use the
Calculate Slope feature (at the top of the window) to calculate the average rate of change
of temperature. To calculate the change in temperature across the region we are looking at,
click on Calculate Slope and then click on Temperature from the drop-down menu. Once
you’ve done this, start hovering over the graph, and you will see a dot. When you click a
location on the curve, that dot will be locked into place. It will then ask you to select another
point on the graph and calculate the slope between the two points. Do this by choosing the
lowest point before a temperature rise, and then the highest point. The tool will then report
the average rate of temperature change in degrees per year.

• Question 23 What value did you get for average rate of temperature change (the
slope) during your chosen interval? (2 points)

Now let’s measure the recent rate of temperature rise. To do so, either reset and zoom in
on the far right of the plot, or use the show item at the top of the screen and select the last
5000 years. You should see a relatively constant temperature with a rise in the last 100-200
years.

Measure the rate of this temperature rise using the Calculate Slope tool as before.

• Question 24 What range of times did you choose to measure the slope over? (2
points)

• Question 25 What value did you get for average rate of temperature change? (2
points)

• Question 26 Compare the rate of temperature change in the last 100-200 years with
that of the fastest rate of change in the last 800,000 years: which is bigger? (3 points)

• Question 27 Considering the rate of change of temperature you see in the Milankovich
cycle simulator, what are the connections (if any) between the Milankovitch Cycles .
(3 points)
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11.6 Long term climate change

Ice cores provide records of temperature over the last several hundred thousand years. This
is only a tiny fraction of the Earth’s history: the Earth is about 4.5 billion years old, and
500,000 years is 0.0005 billion years!

Tracking temperatures over longer periods of time is less precise, but scientists have
provides some estimates.

Figure 11.5 shows estimates of temperature change over the last 500 million years. Note
that the scale on the horizontal axis is not linear in time! The data we have been looking at
appears in the rightmost two panels, but the more recent times are stretched out compared
to older times. The same is true as one goes farther back in time on the plot, as you can see
from the axis labels.

Figure 11.5: Long term temperature changes on Earth

• Question 28 Has the Earth been significantly hotter than it is now at any point in
the past? When? (3 points)

• Question 29 If the Earth was warmer in the past, does that mean that we shouldn?t
be concerned about a rapid rise in temperature now over the recent 100-200 years?
Why or why not? (5 points)
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Name:
Date:

12 Characterizing Exoplanets

12.1 Introduction

Exoplanets are a hot topic in astronomy right now. As of January, 2015, there were over 1500
known exoplanets with more than 3000 candidates waiting to be confirmed. These exoplanets
and exoplanet systems are of great interest to astronomers as they provide information on
planet formation and evolution, as well as the discovery of a variety of types of planets
not found in our solar system. A small subset of these planetary systems are of interest
for another reason: They may support life. In this lab you will analyze observations of
exoplanets to fully characterize their nature. At the end, you will then compare your results
with simulated images of these exoplanets to see how well you performed. Note that the
capabilities required to intensely study exoplanets have not yet been built and launched into
space. But we know enough about optics that we can envision a day when advanced space
telescopes, like those needed for the conclusion of today’s lab, will be in Earth orbit and will
directly image these objects, as well as obtain spectra to search for the chemical signatures
of life.

12.2 Types of Exoplanets

As you have learned in class this semester, our solar system has two main types of planets:
Terrestrial (rocky) and Jovian (gaseous). Because these were the only planets we knew
about, it was hard to envision what other kinds of planets might exist. Thus, when the first
exoplanet was discovered, it was a shock for astronomers to find out that this object was a
gas giant like Jupiter, but had an orbit that was even smaller than that of Mercury! This
lead to a new kind of planet called “Hot Jupiters”. In the two decades since the discovery
of that first exoplanet, several other new types of planets have been recognized. Currently
there are six major classes that we list below. We expect that other types of planets will be
discovered as our observational techniques improve.

12.2.1 Gas Giants

Gas giants are planets similar to Jupiter, Saturn, Uranus, and Neptune. They are mostly
composed of hydrogen and helium with possible rocky or icy cores. Gas giants have masses
greater than 10 Earth masses. Roughly 25 percent of all discovered exoplanets are gas giants.

12.2.2 Hot Jupiters

Hot Jupiters are gas giants that either formed very close to their host star or formed farther
out and “migrated” inward. If there are multiple planets orbiting a star, they can interact
through their gravity. This means that planets can exchange energy, causing their orbits to
expand or to shrink. Astronomers call this process migration, and we believe it happened
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early in the history of our own solar system. Hot Jupiters are found within 0.05-0.5 AU of
their host star (remember that the Earth is at 1 AU!). As such, they are extremely hot (with
temperatures as high as 2400 K), and are the most common type of exoplanet found; about
50 percent of all discovered exoplanets are Hot Jupiters. This is due to the fact that the
easiest exoplanets to detect are those that are close to their host star and very large. Hot
Jupiters are both.

12.2.3 Water Worlds

Water worlds are exoplanets that are completely covered in water. Simulations suggest that
these planets actually formed from debris rich in ice further from their host star. As they
migrated inward, the water melted and covered the planet in a giant ocean.

12.2.4 Exo-Earths

Exo-Earths are planets just like the Earth. They have a similar mass, radius, and temper-
ature to the Earth, orbiting within the “habitable zone” of their host stars. Only a very
small number of Exo-Earth candidates have been discovered as they are the hardest type of
planet to discover.

12.2.5 Super-Earths

Super-Earths are potentially rocky planets that have a mass greater than the Earth, but no
more than 10 times the mass of the Earth. “Super” only refers to the mass of the planet
and has nothing to do with anything else. Therefore, some Super Earths may actually be
gas planets similar to (slightly) smaller versions of Uranus or Neptune.

12.2.6 Chthonian Planets

“Chthonian” is from the Greek meaning “of the Earth.” Chthonian Planets are exoplanets
that used to be gas giants but migrated so close to their host star that their atmosphere was
stripped away leaving only a rocky core. Due to their similarities, some Super Earths may
actually be Chthonian Planets.

12.3 Detection Methods

There are several methods used to detect exoplanets. The most useful ones are listed below.

12.3.1 Transit Method/Light Curves

The transit method attempts to detect the “eclipse” of a star by a planet that is orbiting it.
Because planets are tiny compared to their host stars, these eclipses are very small, requiring
extremely precise measurements. This is best done from space, where observations can be
made continuously, as there is no night or day, or clouds to get in the way. This is the
detection method used by the Kepler Space Telescope. Kepler stared at a particular patch
of sky and observed over a hundred thousand stars continuously for more than four years.
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It measured the amount light coming from each star. It did this over and over, making a
new measurement every 30 minutes. Why? If we were looking back at the Sun and wanted
to detect the Earth, we would only see one transit per year! Thus, you have to continuously
stare at the star to insure you do not miss this event (as you need at least three of these
events to determine that the exoplanet is real, and to measure its orbital period). The end
result is something called a “light curve”, a graph of the brightness of a star over time. The
entire process is diagrammed in Figure 12.6. We will be exclusively using this method in lab
today.

Figure 12.6: The diagram of an exoplanet transit. The planet, small, dark circle, crosses
in front of the star as seen from Earth. In the process, it blocks out some light. The light
curve, shown on the bottom, is a plot of brightness versus time, and shows that the star
brightness is steady until the exoplanet starts to cover up some of the visible surface of the
star. As it does so, the star dims. It eventually returns back to its normal brightness only
to await the next transit.

In Figure 12.6, there is a dip in the light curve, signifying that an object passed between
the star and our line of sight. If, however, Kepler continues to observe that star and sees
the same sized dip in the light curve on a periodic basis, then it has probably detected an
exoplanet (we say “probably” because a few other conditions must be met for it to be a
confirmed exoplanet). The amount of star light removed by the planet is very small, as all
planets are much, much smaller than their host stars (for example, the radius of Jupiter is
11 times that of the Earth, but it is only 10% the radius of the Sun, or 1% of the area = how
much the light dims). Therefore, it is much easier to detect planets that are larger because
they block more of the light from the star. It is also easier to detect planets that are close
to their host star because they orbit quickly so Kepler could observe several dips in the light
curve each year.

12.3.2 Direct Detection

Direct detection is exactly what it sounds like. This is the method of imaging (taking a pic-
ture) of the planets around another star. But we cannot simply point a telescope at a star
and take a picture because the star is anywhere from 100 million (108) to 100 billion (1011)
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times brighter than its exoplanets. In order to combat the overwhelming brightness of a star,
astronomers use what is called a “coronagraph” to block the light from the star in order to
see the planets around it. You may have already seen images made with a coronagraph to
see the “corona” of the Sun in the Sun lab.

Figure 12.7: A coronagraphic image of an exoplanet orbiting the star Fomalhaut (inside
the box, with the arrow labeled “2012”). This image was obtained with the Hubble Space
Telescope, and the star’s light has been blocked-out using a small metal disk. Fomalhaut is
also surrounded by a dusty disk of material—the broad band of light that makes a complete
circle around the star. This band of dusty material is about the same size as the Kuiper belt
in our solar system. The planet, “Fomalhaut B”, is estimated to take 1,700 years to orbit
once around the star. Thus, using Kepler’s third law (P2 ∝ a3), it is roughly about 140 AU
from Fomalhaut (remember that Pluto orbits at 39.5 AU from the Sun).

So if astronomers can block the light from the Sun to see its corona, they should be
able to block the light from distant stars to see the exoplanets right? While this is true,
directly seeing exoplanets is difficult. There are two problems: the exoplanet only shines
by reflected light, and it is located very, very close to its host star. Thus, it takes highly
specialized techniques to directly image exoplanets. However, for some of the closest stars
this can be done. An example of direct exoplanet detection is shown in Figure 12.7. A
new generation of space-based telescopes that will allow us to do this for many more stars is
planned. Eventually, we should be able to take both spectra (to determine their composition)
and direct images of the planets themselves. We will pretend that we can obtain good images
of exoplanets later in lab today.

12.3.3 Radial Velocity (Stellar Wobble)

The radial velocity or “stellar wobble” method involves measuring the Doppler shift of the
light from a particular star and seeing if the lines in its spectrum oscillate periodically
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between a red and blue shift. As a planet orbits its star, the planet pulls on the star gravi-
tationally just as the star pulls on the planet. Thus, as the planet goes around and around,
it slightly tugs on the star and makes it wobble, causing a back and forth shift in its radial
velocity, the motion we see towards and away from us. Therefore, if astronomers see a star
wobbling back and forth on a repeating, periodic timescale, then the star has at least one
planet orbiting around it. The size of the wobble allows astronomers to calculate the mass
of the exoplanet.

12.4 Characterizing Exoplanets from Transit Light Curves

Quite a bit of information about an exoplanet can be gleaned from its transit light curve.
Figure 12.8 shows how a little bit of math (from Kepler’s laws), and a few measurements,
can tell us much about a transiting exoplanet.

Figure 12.8: An exoplanet transit light curve (bottom) can provide a useful amount of
information. The most important attribute is the radius of the exoplanet. But if you know
the mass and radius of the exoplanet host star, you can determine other details about the
exoplanet’s orbit. As the figure suggests, by observing multiple transits of an exoplanet, you
can actually determine whether it has a moon! This is because the exoplanet and its moon
orbit around the center of mass of the system (“barycenter”), and thus the planet appears
to wobble back and forth relative to the host star.

The equations shown in Figure 12.8 are complicated by the fact that exoplanets do not
orbit their host stars in perfect circles, and that the transit is never exactly centered. Today
we are going to only study planets that have circular orbits, and whose orbital plane is edge-
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on. Thus, all of the terms with “cosi” (“i” is the inclination of the orbit to our sight line, and
i = 0◦ for edge on), cosδ or sinδ (δ is the transit latitude, here δ = 90◦), and “e” (which is
the eccentricity, the same orbital parameter you have heard about in class for our solar sys-
tem planets, or in the orbit of Mercury lab, for circular orbits e= 1.0) are equal to “1” or “0”.

First, let’s remember Kepler’s third law P2 ∝ a3, where P is the orbital period, and a
is the semi-major axis. For Earth, we have P = 1 yr, a = 1 AU. By taking ratios, you can
figure out the orbital periods and semi-major axes of other planets in our solar system. Here
we cannot do that, and we need to use Isaac Newton’s reformulation of Kepler’s third law:

P 2 =
4π2a3

G(Mstar +Mplanet)
(1)

“G” in this equation is the gravitational constant (G = 6.67 x 10−11 Newton-m2/kg2),
and π = 3.14.

We also have to estimate the size of the planet. As detailed in Fig. 12.8, the depth of
the “eclipse” gives us the ratio of the radius of the planet to that of the star:

∆F

F
=

(
Rplanet

Rstar

)2

(2)

Now we have everything we need to use transits to characterize exoplanets. We will
have to re-arrange equations 1 and 2 so as to extract unknown parameters where the other
variables are known from measurements.

12.5 Deriving Parameters from Transit Light Curves

The orbital period of the exoplanet is the easiest parameter to measure. In Figure 12.9 is
the light curve of “Kepler 1b”, the first of the exoplanets examined by the Kepler mission.
Kepler 1b is a Hot Jupiter, so it has a deep transit. You can see from the figure that transits
recur every 2.5 days. That is the orbital period of the planet. It is very easy to figure out
orbital periods, so we will not be doing that in this lab today.

In the following eight figures are the light curves of eight different transiting exoplanets.
Today you will be using these light curves to determine the properties of transiting exoplan-
ets. To help you through this complicated process, the data for exoplanet #8 will be worked
out at each step below. You will do the same process for one of the other seven transiting
exoplanets. Your TA might assign one to you, or you will be left to choose one. Towards
the end of today’s exercise your group will classify both of these exoplanets. Each panel lists
the orbital period of the exoplanets (“xxx day orbit”), ranging from 3.89 days for exoplanet
#3, to 3.48 years for exoplanet #2. You should be able to guess what that means already:
one is close to its host star, the other far away. The other information contained in these
figures is a measurement of “t”, the total time of the transit (“eclipse takes xxx hours”).
When working with the equations below, all time units must be in seconds! Remember, 3600
seconds per hour, 24 hours per day, 365 days per year (there are 3.15 × 107 seconds per year).
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Figure 12.9: The light curve of Kepler 1b as measured by the Kepler satellite. The num-
bers on the y-axis are the total counts (how much light was measured), while the x-axis is
“modified Julian days”. This is a system that simply makes it easy to figure out periods of
astronomical events since it is a number that increases by 1 every day (instead of figuring
out how many days there were between June 6th and November 3rd). Thus, to get an orbital
period you just subtract the MJD of one event from the MJD of the next event.

Exercise #1:

1. The first quantity we need to calculate is the size of the planet with respect to the
host star. How do we do that? Go back to Figure 12.8. We need to measure “∆F/F”.
The data points in the exoplanet light curves have been fit with a transit model (the
solid line fit to the data points) to make it easy to measure the minimum. For both
of the transits, take a ruler and determine the value on the y axis by drawing a line
across the model fit to the light curve minimum. Estimate this number as precisely as
possible, then subtract this number from 1, and you get ∆F/F. (2 points)

∆F/F for transit # =

∆F/F for transit #8 = 0.00153
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Figure 12.10: Transiting exoplanet #1. The vertical line in the center of the plot simply
identifies the center of the eclipse.

Figure 12.11: Transiting exoplanet #2.
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Figure 12.12: Transiting exoplanet #3.

Figure 12.13: Transiting exoplanet #4.
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Figure 12.14: Transiting exoplanet #5.

Figure 12.15: Transiting exoplanet #6.
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Figure 12.16: Transiting exoplanet #7.

Figure 12.17: Transiting exoplanet #8.
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Going back to equation #2, we have:

∆F

F
=

(
Rplanet

Rstar

)2

or Rplanet =

(
∆F

F

)1/2

(× Rstar)

2. Taking the square roots of the ∆F/F from above, fill in the following blanks (4 points):

Rplanet for transit # = (× Rstar)

Rplanet for transit #8 = 0.0391 (× Rstar)

You just calculated the relative sizes of the planets to their host stars. To turn these into
real numbers, we have to know the sizes of the host stars. Astronomers can figure out the
masses, radii, temperatures and luminosities of stars by combining several techniques (pho-
tometry, parallax, spectroscopy, and interferometry). Note that stars can have dramatically
different values for their masses, radii, temperatures and luminosities, and these directly
effect the parameters derived for their exoplanets. The data for the eight exoplanet host
stars are listed in Table 12.1. The values for our Sun are M� = 2 × 1030 kg, R� = 7 × 108

m, L� = 4 × 1026 Watts.

Table 12.1: Exoplanet Host Star Data
Object Mass Radius Temperature Luminosity

(kg) (meters) (K) (Watts)

#1 2.0×1030 7.00×108 5800 4.0×1026

#2 1.3×1030 4.97×108 4430 2.8×1025

#3 2.2×1030 7.56×108 6160 1.2×1027

#4 2.0×1030 7.00×108 5800 4.0×1026

#5 1.6×1030 5.88×108 5050 2.4×1026

#6 2.0×1030 7.00×108 5800 4.0×1026

#7 1.4×1030 5.25×108 4640 4.8×1025

#8 1.0×1030 3.99×108 3760 4.0×1024

3. Now that you calculated the radius of the exoplanet with respect to the host star ra-
dius, use the data in Table 12.1 to convert the radii of your planet into meters, and
put this value in the correct row and column in Table 12.2. (5 points)

4. Astronomer Judy, and her graduate student Bob, used the spectrograph on the Keck
telescope in Hawaii to measure the masses of your planets using the radial velocity
technique mentioned above. So we have entered their values for the masses for all of
the exoplanets in Table 12.2. You need to calculate the density of your exoplanet and
enter it in the correct places in Table 12.2. Remember that density = mass/volume,
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Table 12.2: Exoplanet Data

Object Radius Semi-major Mass Density Temperature

(m) axis (m) (kg) (kg/m3) (K)

#1 1.9 × 1026

#2 1.9 × 1028

#3 5.7 × 1027

#4 6.0 × 1024

#5 1.5 × 1025

#6 8.0 × 1026

#7 4.0 × 1024

#8 1.6×107 9.0×109 5.5 × 1025 3205 555
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and the volume of all of the planets is V = 4πR3/3, as we know that they all must be
spherical. (5 points)

5. By calculating the density, you already know something about your planets. Remember
that the density of Jupiter is 1326 kg/m3 and the density of the Earth is 5514 kg/m3.
If you did the Density lab this semester, we used the units of gm/cm3, where water
has a density of 1.00 gm/cm3. This is the “cgs” system of units. To get from kg/m3 to
gm/cm3, you simply divide by 1000. Describe how the densities of your two exoplanets
compare with the Earth and/or Jupiter. (5 points)

The next parameter we want to calculate is the semi-major axis “a”. While we now
know the size and densities of our planets, we do not know how hot or cold they are.
We need to figure out how far away they are from their host stars. To do this we
re-arrange equation #1, and we get this:

a =

(
P 2G(Mstar +Mplanet)

4π2

)1/3

= (1.69× 10−12P 2Mstar)
1/3

6. You must use seconds for P, and kg for the mass of the star (note: you can ignore
the mass of the planet since it will be very small compared to the star). We have
simplified the equation by bundling G and 4π2 into a single constant. Note that you
have to take the cube root of the quantity inside the parentheses. We write the cube
root as an exponent of “1/3”. Ask your TA for help on this step. Fill in the column
for semi-major axis in Table 12.2 for your exoplanet. (5 points)

12.6 The Habitable Zone

The habitable zone is the region around a star in which the conditions are just right for a
planet to have liquid water on its surface. Here on Earth, all life must have access to liquid
water to survive. Therefore, a planet is considered “habitable” if it has liquid water. This
zone is also colloquially know as the “Goldilocks Zone”.
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To figure out the temperature of a planet is actually harder than you might think. We
know how much energy the exoplanet host stars emit, as that is what we call their luminosi-
ties. We also know how far away your exoplanets are from this energy source (the semi-major
axis). The formula to estimate the “equilibrium temperature” of an exoplanet with a semi-
major axis of a around a host star with known parameters is:

Tplanet = Tstar(1.0− A)1/4

(
Rstar

2a

)1/2

(3)

The “A” in this equation is the “Albedo,” how much of the energy intercepted by a planet is
reflected back into space. Equation #3 is not too hard to derive, but we do not have enough
time to explain how it arises. You can ask your professor, or search Wikipedia using the term
“Planetary equilibrium temperature” to find out where this comes from. The big problem
with using this equation is that different atmospheres create different effects. For example,
Venus reflects 67% of the visible light from the Sun, yet is very hot. The Earth reflects 39%
of the visible light from the Sun and has a comfortable climate. It is how the atmosphere
“traps heat” that helps determine the surface temperature. Alternatively, a planet might not
even have an atmosphere and could be bright or dark with no heat trapping (for example,
the Albedo of the moon is 0.11, as dark as asphalt, and the surface is boiling hot during the
day, and extremely cold at night).

Let’s demonstrate the problem using the Earth. If we use the value of A = 0.39 for Earth,
equation #3 would predict a temperature of TEarth = 247 K. But the mean temperature on
the Earth is actually TEarth = 277 K. Thus, the atmosphere on Earth keeps it warmer than
the equilibrium temperature. This is true for just about any planet with a significant atmo-
sphere. To account for this effect, let’s go backwards and solve for “A”. With R� = 7.0 ×
108 m, a = 1.50 × 1011 m, TEarth = 277 K, and T� = 5800 K, we find that A = 0.05. Thus,
the Earth’s atmosphere makes it seem like we absorb 95% of the energy from the Sun. We
will presume this is true for all of our planets.

If we assume A = 0.05, equation #3 simplifies to:

Tplanet = 0.70

(
Rstar

a

)1/2

Tstar (4)

[To understand what we did here, note that (1.0 − A) = 0.95. The fourth root of 0.95 =
0.951/4 = 0.99 (remember the fourth root is two successive square roots:

√
0.95 = 0.951/2 =

0.97, and 0.971/2 = 0.99). We then divided 0.99 by
√

2 (= 1.41) to have a single constant
out front.]

7. Calculate the temperature of your exoplanet using equation #4 and enter it into Table
12.2. (5 points)
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As we said, the habitable zone is the region around a star of a particular luminosity
where water might exist in a liquid form somewhere on a planet orbiting that star. The
Earth (a = 1 AU) sits in the habitable zone for the Sun, while Venus is too close to the
Sun (a = 0.67 AU) to be inside the habitable zone, while Mars (a = 1.52 AU) is near the
outer edge. As we just demonstrated, the atmosphere of a planet can radically change the
location of the habitable zone. Mars has a very thin atmosphere, so it is very cold there and
all of its water is frozen. If Mars had the thick atmosphere of Venus, it would probably have
abundant liquid water on its surface. As we noted, the mean temperature of Earth is 277 K,
but the polar regions have average temperatures well below freezing (32◦F = 273 K) with
an average annual temperature at the North pole of 263 K, and 228 K at the South pole.
The equatorial regions of Earth meanwhile have average temperatures of 300 K. So for just
about every planet there will be wide ranges in surface temperature, and liquid water could
exist somewhere on that planet.

8. Given that your temperature estimates are not very precise, we will consider your
planet to be in the habitable zone if its temperature is between 200K and 350 K. Is
either of your planets in the habitable zone? (4 points)

12.7 Classifying Your Exoplanets

At the beginning of today’s lab we described the several types of exoplanet classes that
currently exist. We now want you to classify your exoplanet into one of these types. To help
you decide, in Table 12.3 we list the parameters of the planets in our solar system. After
you have classified them, you will ask your TA to see “images” of your exoplanets to check
to see how well your classifications turned out.

9. Compare the radii, the semi-major axes, the masses, densities and temperatures you
found for your two exoplanets to the values found in our solar system. For example,
if the radius of one of your exoplanets was 8 × 107, and its mass was 2.5 × 1027 it is
similar in “size” to Jupiter. But it could have a higher or lower density, depending on
composition, and it might be hotter than Mercury, or colder than Mars. Fully describe
your two exoplanets. (10 points)
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Table 12.3: Solar System Data

Object Radius Semi-major Mass Density Temperature

(m) axis (m) (kg) (kg/m3) (K)

Mercury 2.44 × 106 5.79 × 1010 3.3 × 1023 5427 445

Venus 6.05 × 106 1.08 × 1011 4.9 × 1024 5243 737

Earth 6.37 × 106 1.49 × 1011 5.9 × 1024 5514 277

Mars 3.39 × 106 2.28 × 1011 6.4 × 1023 3933 210

Jupiter 6.99 × 107 7.78 × 1011 1.9 × 1027 1326 122

Saturn 6.03 × 107 1.43 × 1012 5.7 × 1026 687 90

Uranus 2.54 × 107 2.87 × 1012 8.7 × 1025 1270 63

Neptune 2.46 × 107 4.50 × 1012 1.0 × 1026 1638 50

Pluto 1.18 × 106 5.87 × 1012 1.3 × 1022 2030 43

As Table 12.3 shows you, there are two main kinds of planets in our solar system: the
rocky Terrestrial planets with relatively thin atmospheres, and the Jovian planets, which
are gas giants. Planets with high densities (> 3000 kg/m3) are probably like the Terrestrial
planets. Planets with low densities (< 3000 kg/m3) are probably mostly gaseous or have
large amounts of water (Pluto has a large fraction of its mass in water ice).

10. Given your discussion from the previous question, and the discussion of the types of
exoplanets in the introduction, classify your two exoplanets into one of the following
categories: 1) Gas giant, 2) Hot Jupiter, 3) Water world, 4) Exo-Earth, 5) Super-Earth,
or 6) Chthonian. What do you expect them to look like? (10 points)
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11. Your TA has images for all eight exoplanets of this lab obtained from NASA’s “Exo-
planet Imager” mission that was successfully launched in 2040. Were your predictions
correct? Yes/no. If no, what went wrong? [The TA also has the data for all of the
exoplanets to help track down any errors.] (10 points)
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Name:
Date:

12.8 Take Home Exercise (35 points total)

Please summarize the important concepts discussed in this lab. Your summary should in-
clude:

• Discuss the different types of exoplanets and their characteristics.

• What are the measurements required for you to determine the most important param-
eters of an exoplanet?

• What requirement for an exoplanet gives it the possibility of harboring life?

Use complete sentences, and proofread your summary before handing in the lab.

12.9 Possible Quiz Questions

1. What are some of the different types of exoplanets?

2. What are some different exoplanet detection methods?

3. What is the habitable zone?

12.10 Extra Credit (ask your TA for permission before attempt-
ing, 5 points )

Your TA has the data for all of the exoplanets for today’s lab. With that data, go back and
answer questions #8 and #9 for all of the exoplanets.

Acknowledgement: This lab was made possible using the Extrasolar Planets Module of
the Nebraska Astronomy Applet Project.
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Date:

13 Appendix A: Algebra Review

Because this is a freshman laboratory, we do not use high-level mathematics. But we do
sometimes encounter a little basic algebra and we need to briefly review the main concepts.
Algebra deals with equations and “unknowns”. Unknowns, or “variables”, are usually rep-
resented as a letter in an equation: y = 3x + 7. In this equation both “x” and “y” are
variables. You do not know what the value of y is until you assign a value to x. For example,
if x = 2, then y = 13 (y = 3×2 + 7 = 13). Here are some additional examples:

y = 5x + 3, if x=1, what is y? Answer: y = 5×1 + 3 = 5 + 3 = 8

q = 3t + 9, if t=5, what is q? Answer: q = 3×5 + 9 = 15 + 9 = 24

y = 5x2 + 3, if x=2, what is y? Answer: y = 5×(22) + 3 = 5×4 + 3 = 20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

13.1 Solving for X

These problems were probably easy for you, but what happens when you have this equation:
y = 7x + 14, and you are asked to figure out what x is if y = 21? Let’s do this step by step,
first we re-write the equation:

y = 7x + 14

We now substitute the value of y (y = 21) into the equation:

21 = 7x + 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from both
sides of the equation:

21 − 14 = 7x + 14 − 14 (this gets rid of that pesky 14!)

7 = 7x (divide both sides by 7)

x = 1

Ok, your turn: If you have the equation y = 4x + 16, and y = 8, what is x?
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We frequently encounter more complicated equations, such as y= 3x2 + 2x − 345, or p2 =
a3. There are ways to solve such equations, but that is beyond the scope of our introduction.
However, you do need to be able to solve equations like this: y2 = 3x + 3 (if you are told
what “x” is!). Let’s do this for x = 11:

Copy down the equation again:

y2 = 3x + 3

Substitute x = 11:

y2 = 3×11 + 3 = 33 + 3 = 36

Take the square root of both sides:

(y2)1/2 = (36)1/2

y = 6

Did that make sense? To get rid of the square of a variable you have to take the square
root: (y2)1/2 = y. So to solve for y2, we took the square root of both sides of the equation.
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14 Observatory Worksheets
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