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1 Tools for Success in ASTR 1120G

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject they
are looking at, and submit their results for publication. Along the way astronomers use
all of the mathematical techniques and physics necessary to understand the objects they
examine. Thus, just like any other science, a large number of mathematical tools and con-
cepts are needed to perform astronomical research. In today’s introductory lab, you will
review and learn some of the most basic concepts necessary to enable you to successfully
complete the various laboratory exercises you will encounter during this semester. When
needed, the weekly laboratory exercise you are performing will refer back to the examples in
this introduction—so keep the completed examples you will do today with you at all times
during the semester to use as a reference when you run into these exercises later this semester
(in fact, on some occasions your TA might have you redo one of the sections of this lab for
review purposes).

1.2 A Note About Ratios

You will encounter ratios in many of your classes, cooking, recipes, money transactions,
etc.! A ratio simply indicates how many times one number contains the other number. For
example, if I had a bowl of fruit with 8 apples and 6 bananas, the ratio of apples to bananas
would be eight to six (or we could say 8:6. Which is equal to 4:3). We know this bowl of
fruit has 14 total fruit in it. So we know that there is 8 apples out of the total of 14 fruit,
or a ratio of 8:14 (which is equal to a ratio of 4:7. Which we are able to get by noting that
both “8” and “14” have something in common! They can be divided by 2!).

Additionally, if I take the ratio 8:14 and I divide 8 by 14 I would get 0.57 (or 57%).
From knowing the ratio of apples to total number of fruit in the bowl, I know there are 57%
apples. Similarly, we said that the ratio of 8:14 was similar to 4:7. If we did the same thing
by dividing 4 by 7, we would also get 0.57 (or 57%)! Which makes sense since we said they
were equal!!

In fact, a ratio may be considered as an ordered pair of numbers, or a fraction! The first
number in a ratio would be the numerator of a fraction. And the second number in the ratio
would be the denominator.

Ratios may be quantities of any kind! They can be counts of people or objects! These
ratios can be lengths, weights, time, etc.

Practice with ratios:
Remember, a ratio compares two different quantities. Those two quantities can be any-

thing. In your astronomy labs they will most likely be comparing two distances, lengths, or
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time. The order of a ratio matters!

1. If you drive for 60 miles in 2 hours, how fast were you driving? Show how you figured
this out! (1 points)

This is a common use of ratios (and proportions). This is comparing the number of
miles (60) to the number of hours it took to drive (2). So the ratio is 60:2 (which we
would verbal express as “60 miles in 2 hours”).

2. Now let’s say you rode your bike at a rate of 10 miles per hour for 4 hours. How many
miles did you travel? Show your work with how you solved it. (2 points)

We know our ratio is 10:1 (10 miles per 1 hour). So that tells us that in 4 hours, we
will have traveled a total of 40 miles.

3. Looking ahead to the scale model lab, we will place all the planets on the Football
field with Pluto at the 100 yard line. One of the instructions asks you to figure out
how many yards there are per AU based on the fact that Pluto is at the 100 yard line
(an AU is an Astronomical Unit which is the average distance between the sun and
Earth). We know that Pluto is 40 AU away in space. So if we were to “scale” down
the distance to yards on a football field, we know that there would be a ratio of 100
yards to AU. Similar to the miles per hour example above, how many yards per AU is
there in a “Scale Model” of the solar system? (2 points)
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1.3 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is based on
powers of 10, and has a set of measurement units analogous to the English system we use
in everyday life here in the US. In the metric system the main unit of length (or distance)
is the meter, the unit of mass is the kilogram, and the unit of liquid volume is the liter. A
meter is approximately 40 inches, or about 4” longer than the yard. Thus, 100 meters is
about 111 yards. A liter is slightly larger than a quart (1.0 liter = 1.101 qt). On the Earth’s
surface, a kilogram = 2.2 pounds.

As you have almost certainly learned, the metric system uses prefixes to change scale. For
example, one thousand meters is one “kilometer.” One thousandth of a meter is a “millime-
ter.” The prefixes that you will encounter in this class are listed in Table 1.3.

Table 1.1: Metric System Prefixes
Prefix Name Prefix Symbol Prefix Value

Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro µ 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

In the metric system, 3,600 meters is equal to 3.6 kilometers; 0.8 meter is equal to 80
centimeters, which in turn equals 800 millimeters, etc. In the lab exercises this semester we
will encounter a large range in sizes and distances. For example, you will measure the sizes of
some objects/things in class in millimeters, talk about the wavelength of light in nanometers,
and measure the sizes of features on planets that are larger than 1,000 kilometers.

1.4 Beyond the Metric System

When we talk about the sizes or distances to objects beyond the surface of the Earth, we
begin to encounter very large numbers. For example, the average distance from the Earth
to the Moon is 384,000,000 meters or 384,000 kilometers (km). The distances found in
astronomy are usually so large that we have to switch to a unit of measurement that is much
larger than the meter, or even the kilometer. In and around the solar system, astronomers
use “Astronomical Units.” An Astronomical Unit is the mean (average) distance between
the Earth and the Sun. One Astronomical Unit (AU) = 149,600,000 km. For example,
Jupiter is about 5 AU from the Sun, while Pluto’s average distance from the Sun is 39 AU.
With this change in units, it is easy to talk about the distance to other planets. It is more
convenient to say that Saturn is 9.54 AU away than it is to say that Saturn is 1,427,184,000
km from Earth.
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1.5 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is something
you must master during this semester. You already do this in your everyday life whether
you know it or not (for example, if you travel to Mexico and you want to pay for a Coke in
pesos), so do not panic! Let’s look at some examples (2 points each):

1. Convert 34 meters into centimeters:

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:

3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. In August 2003, Mars made its closest approach to Earth for the next 50,000 years.
At that time, it was only about .373 AU away from Earth. How many km is this?

1.5.1 Map Exercises

One technique that you will use this semester involves measuring a photograph or image
with a ruler, and converting the measured number into a real unit of size (or distance). One
example of this technique is reading a road map. Figure 1.1 shows a map of the state of
New Mexico. Down at the bottom left hand corner of the map is a scale in both miles and
kilometers.

Use a ruler to determine (2 points each):

6. How many kilometers is it from Las Cruces to Albuquerque?
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Figure 1.1: Map of New Mexico.
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7. What is the distance in miles from the border with Arizona to the border with Texas
if you were to drive along I-40?

8. If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?

9. If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?

1.6 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square roots. Let
us briefly review what is meant by such terms as squares, cubes, square roots and exponents.
The square of a number is simply that number times itself: 3 × 3 = 32 = 9. The exponent
is the little number “2” above the three. 52 = 5 × 5 = 25. The exponent tells you how
many times to multiply that number by itself: 84 = 8 × 8 × 8 × 8 = 4096. The square of
a number simply means the exponent is 2 (three squared = 32), and the cube of a number
means the exponent is three (four cubed = 43). Here are some examples:

• 72 = 7 × 7 = 49

• 75 = 7 × 7 × 7 × 7 × 7 = 16,807

• The cube of 9 (or “9 cubed”) = 93 = 9 × 9 × 9 = 729

• The exponent of 1216 is 16

• 2.563 = 2.56 × 2.56 × 2.56 = 16.777

Your turn (2 points each):

10. 63 =
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11. 44 =

12. 3.12 =

The concept of a square root is fairly easy to understand, but is much harder to calculate (we
usually have to use a calculator). The square root of a number is that number whose square
is the number: the square root of 4 = 2 because 2 × 2 = 4. The square root of 9 is 3 (9 =
3 × 3). The mathematical operation of a square root is usually represented by the symbol
“
√

”, as in
√

9 = 3. But mathematicians also represent square roots using a fractional
exponent of one half: 91/2 = 3. Likewise, the cube root of a number is represented as 271/3

= 3 (3 × 3 × 3 = 27). The fourth root is written as 161/4 (= 2), and so on. Here are some
example problems:

•
√

100 = 10

• 10.53 = 10.5 × 10.5 × 10.5 = 1157.625

• Verify that the square root of 17 (
√

17= 171/2) = 4.123

1.7 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of subatomic
particles, to the size of the entire universe. You are certainly comfortable with numbers
like ten, one hundred, three thousand, ten million, a billion, or even a trillion. But what
about a number like one million trillion? Or, four thousand one hundred and fifty six million
billion? Such numbers are too cumbersome to handle with words. Scientists use something
called “Scientific Notation” as a short hand method to represent very large and very small
numbers. The system of scientific notation is based on the number 10. For example, the
number 100 = 10 × 10 = 102. In scientific notation the number 100 is written as 1.0 × 102.
Here are some additional examples:

• Ten = 10 = 1 × 10 = 1.0 × 101

• One hundred = 100 = 10 × 10 = 102 = 1.0 × 102

• One thousand = 1,000 = 10 × 10 × 10 = 103 = 1.0 × 103

• One million = 1,000,000 = 10 × 10 × 10 × 10 × 10 × 10 = 106 = 1.0 ×106
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Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific notation? 6,563
= 6563.0 = 6.563 × 103. To figure out the exponent on the power of ten, we simply count
the numbers to the left of the decimal point, but do not include the left-most number. Here
are some more examples:

• 1,216 = 1216.0 = 1.216 × 103

• 8,735,000 = 8735000.0 = 8.735000 × 106

• 1,345,999,123,456 = 1345999123456.0 = 1.345999123456 × 1012 ≈ 1.346 × 1012

Note that in the last example above, we were able to eliminate a lot of the “unnecessary”
digits in that very large number. While 1.345999123456 × 1012 is technically correct as the
scientific notation representation of the number 1,345,999,123,456, we do not need to keep
all of the digits to the right of the decimal place. We can keep just a few, and approximate
that number as 1.346 × 1012.

Your turn! Work the following examples (2 points each):

13. 121 = 121.0 =

14. 735,000 =

15. 999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First, lets look at
powers of 10, but this time in fractional form. The number 0.1 = 1

10
. In scientific notation

we would write this as 1 × 10−1. The negative number in the exponent is the way we write
the fraction 1

10
. How about 0.001? We can rewrite 0.001 as 1

10
× 1

10
× 1

10
= 0.001 = 1 ×

10−3. Do you see where the exponent comes from? Starting at the decimal point, we simply
count over to the right of the first digit that isn’t zero to determine the exponent. Here are
some examples:

• 0.121 = 1.21 × 10−1

• 0.000735 = 7.35 × 10−4
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• 0.0000099902 = 9.9902 × 10−6

Your turn (2 points each):

16. 0.0121 =

17. 0.0000735 =

18. 0.0000000999 =

19. −0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in scientific
notation. It is kind of silly to write the number 23.7 as 2.37 × 101, or 0.5 as 5.0 × 10−1. You
use scientific notation when it is a more compact way to write a number to ensure that its
value is quickly and easily communicated to someone else. For example, if you tell someone
the answer for some measurement is 0.0033 meter, the person receiving that information
has to count over the zeros to figure out what that means. It is better to say that the
measurement was 3.3 × 10−3 meter. But telling someone the answer is 215 kg, is much
easier than saying 2.15 × 102 kg. It is common practice that numbers bigger than 10,000 or
smaller than 0.01 are best written in scientific notation.

1.8 Calculator Issues

Since you will be using calculators in nearly all of the labs this semester, you should become
familiar with how to use them for functions beyond simple arithmetic.

1.8.1 Scientific Notation on a Calculator

Scientific notation on a calculator is usually designated with an “E.” For example, if you see
the number 8.778046E11 on your calculator, this is the same as the number 8.778046 ×1011.
Similarly, 1.4672E-05 is equivalent to 1.4672 ×10−5.

Entering numbers in scientific notation into your calculator depends on layout of your cal-
culator; we cannot tell you which buttons to push without seeing your specific calculator.
However, the “E” button described above is often used, so to enter 6.589 ×107, you may
need to type 6.589 “E” 7.

Verify that you can enter the following numbers into your calculator:

• 7.99921 ×1021
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• 2.2951324 ×10−6

1.8.2 Order of Operations

When performing a complex calculation, the order of operations is extremely important.
There are several rules that need to be followed:

i. Calculations must be done from left to right.

ii. Calculations in brackets (parenthesis) are done first. When you have more than one
set of brackets, do the inner brackets first.

iii. Exponents (or radicals) must be done next.

iv. Multiply and divide in the order the operations occur.

v. Add and subtract in the order the operations occur.

If you are using a calculator to enter a long equation, when in doubt as to whether the
calculator will perform operations in the correct order, apply parentheses.

Use your calculator to perform the following calculations (2 points each):

20. (7+34)
(2+23)

=

21. (42 + 5) − 3 =

22. 20 ÷ (12 − 2) × 32 − 2 =

1.9 Graphing and/or Plotting

Now we want to discuss graphing data. You probably learned about making graphs in high
school. Astronomers frequently use graphs to plot data. You have probably seen all sorts
of graphs, such as the plot of the performance of the stock market shown in Fig. 1.2. A
plot like this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market. Each
place on the curve that shows the performance of the stock market is represented by two
numbers, the date (x axis), and the value of the index (y axis). For example, on May 10 of
2004, the Dow Jones index stood at 10,000.

Plots like this require two data points to represent each point on the curve or in the plot.
For comparing the stock market you need to plot the value of the stocks versus the date. We
call data of this type an “ordered pair.” Each data point requires a value for x (the date)
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Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003 to July
2004).

Table 1.2: Temperature vs. Altitude
Altitude Temperature

(feet) oF
0 59.0

2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

and y (the value of the Dow Jones index).

Table 1.2 contains data showing how the temperature changes with altitude near the Earth’s
surface. As you climb in altitude, the temperature goes down (this is why high mountains
can have snow on them year round, even though they are located in warm areas). The data
points in this table are plotted in Figure 1.3.

1.9.1 The Mechanics of Plotting

When you are asked to plot some data, there are several things to keep in mind.

First of all, the plot axes must be labeled. This will be emphasized throughout the
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Figure 1.3: The change in temperature as you climb in altitude with the data from Table 1.2.
At sea level (0 ft altitude) the surface temperature is 59oF. As you go higher in altitude, the
temperature goes down.

semester. In order to quickly look at a graph and determine what information is being con-
veyed, it is imperative that both the x-axis and y-axis have labels.

Secondly, if you are creating a plot, choose the numerical range for your axes such that the
data fit nicely on the plot. For example, if you were to plot the data shown in Table 1.2, with
altitude on the y-axis, you would want to choose your range of y-values to be something like
0 to 18,000. If, for example, you drew your y-axis going from 0 to 100,000, then all of the
data would be compressed towards the lower portion of the page. It is important to choose
your ranges for the x and y axes so they bracket the data points.

1.9.2 Plotting and Interpreting a Graph

Table 1.3 contains hourly temperature data on January 19, 2006, for two locations: Tucson
and Honolulu.
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Table 1.3: Hourly Temperature Data from 19 January 2006
Time Tucson Temp. Honolulu Temp.

hh:mm oF oF
00:00 49.6 71.1
01:00 47.8 71.1
02:00 46.6 71.1
03:00 45.9 70.0
04:00 45.5 72.0
05:00 45.1 72.0
06:00 46.0 73.0
07:00 45.3 73.0
08:00 45.7 75.0
09:00 46.6 78.1
10:00 51.3 79.0
11:00 56.5 80.1
12:00 59.0 81.0
13:00 60.8 82.0
14:00 60.6 81.0
15:00 61.7 79.0
16:00 61.7 77.0
17:00 61.0 75.0
18:00 59.2 73.0
19:00 55.0 73.0
20:00 53.4 72.0
21:00 51.6 71.1
22:00 49.8 72.0
23:00 48.9 72.0
24:00 47.7 72.0

23. On the blank sheet of graph paper in Figure 1.4, plot the hourly temperatures mea-
sured for Tucson and Honolulu on 19 January 2006. (10 points)

24. Which city had the highest temperature on 19 January 2006? (2 points)

25. Which city had the highest average temperature? (2 points)

26. Which city heated up the fastest in the morning hours? (2 points)

While straight lines and perfect data show up in science from time to time, it is actually
quite rare for real data to fit perfectly on top of a line. One reason for this is that all
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Figure 1.4: Graph paper for plotting the hourly temperatures in Tucson and Honolulu.

measurements have error. So even though there might be a perfect relationship between
x and y, the uncertainty of the measurements introduces small deviations from the line.
In other cases, the data are approximated by a line. This is sometimes called a best-fit
relationship for the data.

1.10 Does it Make Sense?

This is a question that you should be asking yourself after every calculation that you do in
this class!

One of our primary goals this semester is to help you develop intuition about our solar sys-
tem. This includes recognizing if an answer that you get “makes sense.” For example, you
may be told (or you may eventually know) that Mars is 1.5 AU from Earth. You also know
that the Moon is a lot closer to the Earth than Mars is. So if you are asked to calculate the
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Earth-Moon distance and you get an answer of 4.5 AU, this should alarm you! That would
imply that the Moon is three times farther away from Earth than Mars is! And you know
that’s not right.

Use your intuition to answer the following questions. In addition to just giving your answer,
state why you gave the answer you did. (5 points each)

27. Earth’s diameter is 12,756 km. Jupiter’s diameter is about 11 times this amount.
Which makes more sense: Jupiter’s diameter being 19,084 km or 139,822 km?

28. Sound travels through air at roughly 0.331 kilometers per second. If BX 102 suddenly
exploded, which would make more sense for when people in Mesilla (almost 5 km away)
would hear the blast? About 14.5 seconds later, or about 6.2 minutes later?

29. Water boils at 100 ◦C. Without knowing anything about the planet Pluto other than
the fact that is roughly 40 times farther from the Sun than the Earth is, would you
expect the surface temperature of Pluto to be closer to -100◦ or 50◦?

1.11 Putting it All Together

We have covered a lot of tools that you will need to become familiar with in order to complete
the labs this semester. Now let’s see how these concepts can be used to answer real questions
about our solar system. Remember, ask yourself does this make sense? for each answer
that you get!

30. To travel from Las Cruces to New York City by car, you would drive 3585 km. What
is this distance in AU? (10 points)
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31. The Earth is 4.5 billion years old. The dinosaurs were killed 65 million years ago due
to a giant impact by a comet or asteroid that hit the Earth. If we were to compress the
history of the Earth from 4.5 billion years into one 24-hour day, at what time would
the dinosaurs have been killed? (10 points)

32. When it was launched towards Pluto, the New Horizons spacecraft was traveling at
approximately 20 kilometers per second. How long did it take to reach Jupiter, which
is roughly 4 AU from Earth? [Hint: see the definition of an AU in Section 1.3 of this
lab.] (7 points)
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Name(s):
Date:

2 The Origin of the Seasons

2.1 Introduction

The origin of the science of Astronomy owes much to the need of ancient peoples to have
a practical system that allowed them to predict the seasons. It is critical to plant your
crops at the right time of the year—too early and the seeds may not germinate because it
is too cold, or there is insufficient moisture. Plant too late and it may become too hot and
dry for a sensitive seedling to survive. In ancient Egypt, they needed to wait for the Nile
to flood. The Nile river would flood every July, once the rains began to fall in Central Africa.

Thus, the need to keep track of the annual cycle arose with the development of agri-
culture, and this required an understanding of the motion of objects in the sky. The first
devices used to keep track of the seasons were large stone structures (such as Stonehenge)
that used the positions of the rising Sun or Moon to forecast the coming seasons. The first
recognizable calendars that we know about were developed in Egypt, and appear to date
from about 4,200 BC. Of course, all a calendar does is let you know what time of year it was,
it does not provide you with an understanding of why the seasons occur! The ancient people
had a variety of models for why seasons occurred, but thought that everything, including
the Sun and stars, orbited around the Earth. Today, you will learn the real reason why there
are seasons.

• Goals: To learn why the Earth has seasons.

• Materials: a meter stick, a mounted plastic globe, an elevation angle apparatus, string,
a halogen lamp, and a few other items

2.2 The Seasons

Before we begin today’s lab, let us first talk about the seasons. In New Mexico we have
rather mild Winters, and hot Summers. In the northern parts of the United States, however,
the winters are much colder. In Hawaii, there is very little difference between Winter and
Summer. As you are also aware, during the Winter there are fewer hours of daylight than
in the Summer. In Table 2.1 we have listed seasonal data for various locations around the
world. Included in this table are the average January and July maximum temperatures, the
latitude of each city, and the length of the daylight hours in January and July. We will use
this table in Exercise #2.

In Table 2.1, the “N” following the latitude means the city is in the northern hemisphere
of the Earth (as is all of the United States and Europe) and thus North of the equator. An
“S” following the latitude means that it is in the southern hemisphere, South of the Earth’s
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Table 2.1: Season Data for Select Cities
City Latitude January Ave. July Ave. January July

(Degrees) Max. Temp. Max. Temp. Daylight Daylight
Hours Hours

Fairbanks, AK 64.8N -2 72 3.7 21.8
Minneapolis, MN 45.0N 22 83 9.0 15.7
Las Cruces, NM 32.5N 57 96 10.1 14.2

Honolulu, HI 21.3N 80 88 11.3 13.6
Quito, Ecuador 0.0 77 77 12.0 12.0

Apia, Samoa 13.8S 80 78 11.1 12.7
Sydney, Australia 33.9S 78 61 14.3 10.3

Ushuaia, Argentina 54.6S 57 39 17.3 7.4

equator. What do you think the latitude of Quito, Ecuador (0.0o) means? Yes, it is right on
the equator. Remember, latitude runs from 0.0o at the equator to ±90o at the poles. If north
of the equator, we say the latitude is XX degrees north (or sometimes “+XX degrees”), and
if south of the equator we say XX degrees south (or “−XX degrees”). We will use these
terms shortly.

Now, if you were to walk into the Mesilla Valley Mall and ask a random stranger “why
do we have seasons”? The most common answer you would get is “because we are closer to
the Sun during Summer, and further from the Sun in Winter”. This answer suggests that
the general public (and most of your classmates) correctly understand that the Earth orbits
the Sun in such a way that at some times of the year it is closer to the Sun than at other
times of the year. As you have (or will) learn in your lecture class, the orbits of all planets
around the Sun are ellipses. As shown in Figure 2.1 an ellipse is sort of like a circle that
has been squashed in one direction. For most of the planets, however, the orbits are only
very slightly elliptical, and closely approximate circles. But let us explore this idea that the
distance from the Sun causes the seasons.

Figure 2.1: An ellipse with the two “foci” identified. The Sun sits at one focus, while the
other focus is empty. The Earth follows an elliptical orbit around the Sun, but not nearly
as exaggerated as that shown here!
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Exercise #1. In Figure 2.1, we show the locations of the two “foci” of an ellipse (foci is
the plural form of focus). We will ignore the mathematical details of what foci are for now,
and simply note that the Sun sits at one focus, while the other focus is empty (see the
Kepler Law lab for more information if you are interested). A planet orbits around the Sun
in an elliptical orbit. So, there are times when the Earth is closest to the Sun
(“perihelion”), and times when it is furthest (“aphelion”). When closest to the Sun, at
perihelion, the distance from the Earth to the Sun is 147,056,800 km (“147 million
kilometers”). At aphelion, the distance from the Earth to the Sun is 152,143,200 km (152
million km).

With the meter stick handy, we are going to examine these distances. Obviously, our
classroom is not big enough to use kilometers or even meters so, like a road map, we will
have to use a reduced scale: 1 cm = 1 million km. Now, stick a piece of tape on the table
and put a mark on it to set the starting point (the location of the Sun!). Carefully measure
out the two distances (along the same direction) and stick down two more pieces of tape,
one at the perihelion distance, one at the aphelion distance (put small dots/marks on the
tape so you can easily see them).

1) Do you think this change in distance is big enough to cause the seasons? Explain your
logic. (3 points)

2) Take the ratio of the aphelion to perihelion distances: . (1 point)

Given that we know objects appear bigger when we are closer to them, let’s take a look at
the two pictures of the Sun you were given as part of the materials for this lab. One image
was taken on January 23rd, 1992, and one was taken on the 21st of July 1992 (as the “date
stamps” on the images show). Using a ruler, carefully measure the diameter of the Sun in
each image:

Sun diameter in January image = mm.

Sun diameter in July image = mm.

3) Take the ratio of bigger diameter / smaller diameter, this = . (1 point)

4) How does this ratio compare to the ratio you calculated in question #2? (2 points)

5) So, if an object appears bigger when we get closer to it, in what month is the Earth
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closest to the Sun? (2 points)

6) At that time of year, what season is it in Las Cruces? What do you conclude about the
statement “the seasons are caused by the changing distance between the Earth and the
Sun”? (4 points)

Exercise #2. Characterizing the nature of the seasons at different locations. For this
exercise, we are going to be exclusively using the data contained in Table 2.1. First, let’s
look at Las Cruces. Note that here in Las Cruces, our latitude is +32.5o. That is we are
about one third of the way from the equator to the pole. In January our average high
temperature is 57oF, and in July it is 96oF. It is hotter in Summer than Winter (duh!).
Note that there are about 10 hours of daylight in January, and about 14 hours of daylight
in July.

7) Thus, for Las Cruces, the Sun is “up” longer in July than in January. Is the same thing
true for all cities with northern latitudes: Yes or No ? (1 point)

Ok, let’s compare Las Cruces with Fairbanks, Alaska. Answer these questions by filling in
the blanks:

8) Fairbanks is the North Pole than Las Cruces. (1 point)

9) In January, there are more daylight hours in . (1 point)

10) In July, there are more daylight hours in . (1 point)

Now let’s compare Las Cruces with Sydney, Australia. Answer these questions by filling in
the blanks:

12) While the latitudes of Las Cruces and Sydney are similar, Las Cruces is
of the Equator, and Sydney is of the Equator. (2 points)

13) In January, there are more daylight hours in . (1 point)

14) In July, there are more daylight hours in . (1 point)

15) Summarizing: During the Wintertime (January) in both Las Cruces and Fairbanks
there are fewer daylight hours, and it is colder. During July, it is warmer in both Fairbanks
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and Las Cruces, and there are more daylight hours. Is this also true for Sydney?:
. (1 point)

16) In fact, it is Wintertime in Sydney during , and Summertime during
. (2 points)

17) From Table 2.1, I conclude that the times of the seasons in the Northern hemisphere
are exactly to those in the Southern hemisphere. (1 point)

From Exercise #2 we learned a few simple truths, but ones that maybe you have never
thought about. As you move away from the equator (either to the north or to the south)
there are several general trends. The first is that as you go closer to the poles it is generally
cooler at all times during the year. The second is that as you get closer to the poles, the
amount of daylight during the Winter decreases, but the reverse is true in the Summer.

The first of these is not always true because the local climate can be moderated by the
proximity to a large body of water, or depend on the elevation. For example, Sydney is
milder than Las Cruces, even though they have similar latitudes: Sydney is on the eastern
coast of Australia (South Pacific ocean), and has a climate like that of San Diego,
California (which has a similar latitude and is on the coast of the North Pacific). Quito,
Ecuador has a mild climate even though it sits right on the equator due to its high
elevation–it is more than 9,000 feet above sea level, similar to the elevation of Cloudcroft,
New Mexico.

The second conclusion (amount of daylight) is always true—as you get closer and closer to
the poles, the amount of daylight during the Winter decreases, while the amount of
daylight during the Summer increases. In fact, for all latitudes north of 66.5o, the Summer
Sun is up all day (24 hrs of daylight, the so called “land of the midnight Sun”) for at least
one day each year, while in the Winter there are times when the Sun never rises! 66.5o is a
special latitude, and is given the name “Arctic Circle”. Note that Fairbanks is very close to
the Arctic Circle, and the Sun is up for just a few hours during the Winter, but is up for
nearly 22 hours during the Summer! The same is true for the southern hemisphere: all
latitudes south of −66.5o experience days with 24 hours of daylight in the Summer, and 24
hours of darkness in the Winter. −66.5o is called the “Antarctic Circle”. But note that the
seasons in the Southern Hemisphere are exactly opposite to those in the North. During
Northern Winter, the North Pole experiences 24 hours of darkness, but the South Pole has
24 hours of daylight.

2.3 The Spinning, Revolving Earth

It is clear from the preceding that your latitude determines both the annual variation in
the amount of daylight, and the time of the year when you experience Spring, Summer,
Autumn and Winter. To truly understand why this occurs requires us to construct a
model. One of the key insights to the nature of the motion of the Earth is shown in the
long exposure photographs of the nighttime sky on the next two pages.
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Figure 2.2: Pointing a camera to the North Star (Polaris, the bright dot near the center)
and exposing for about one hour, the stars appear to move in little arcs. The center of
rotation is called the “North Celestial Pole”, and Polaris is very close to this position.
The dotted/dashed trails in this photograph are the blinking lights of airplanes that passed
through the sky during the exposure.

What is going on in these photos? The easiest explanation is that the Earth is spinning,
and as you keep your camera shutter open, the stars appear to move in “orbits” around the
North Pole. You can duplicate this motion by sitting in a chair that is spinning—the
objects in the room appear to move in circles around you. The further they are from the
“axis of rotation”, the bigger arcs they make, and the faster they move. An object straight
above you, exactly on the axis of rotation of the chair, does not move. As apparent in
Figure 2.3, the “North Star” Polaris is not perfectly on the axis of rotation at the North
Celestial Pole, but it is very close (the fact that there is a bright star near the pole is just
random chance). Polaris has been used as a navigational aid for centuries, as it allows you
to determine the direction of North.

As the second photograph shows, the direction of the spin axis of the Earth does not
change during the year—it stays pointed in the same direction all of the time! If the
Earth’s spin axis moved, the stars would not make perfect circular arcs, but would wander
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Figure 2.3: Here is a composite of many different exposures (each about one hour in length)
of the night sky over Vienna, Austria taken throughout the year (all four seasons). The
images have been composited using a software package like Photoshop to demonstrate what
would be possible if it stayed dark for 24 hrs, and you could actually obtain a 24 hour
exposure (which can only be truly done north of the Arctic circle). Polaris is the smallest
circle at the very center.

around in whatever pattern was being executed by the Earth’s axis.

Now, as shown back in Figure 2.1, we said the Earth orbits (“revolves” around) the Sun on
an ellipse. We could discuss the evidence for this, but to keep this lab brief, we will just
assume this fact. So, now we have two motions: the spinning and revolving of the Earth. It
is the combination of these that actually give rise to the seasons, as you will find out in the
next exercise.

Exercise #3: In this part of the lab, we will be using the mounted plastic globe, a piece
of string, a ruler, and the halogen desklamp. Warning: while the globe used here is
made of fairly inexpensive parts, it is very time consuming to make. Please be
careful with your globe, as the painted surface can be easily scratched. Make
sure that the piece of string you have is long enough to go slightly more than halfway
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around the globe at the equator–if your string is not that long, ask your TA for a longer
piece of string. As you may have guessed, this plastic globe is a model of the Earth. The
spin axis of the Earth is actually tilted with respect to the plane of its orbit by 23.5o.
Set up the experiment in the following way. Place the halogen lamp at one end of the table
(shining towards the closest wall so as to not affect your classmates), and set the globe at a
distance of 1.5 meters from the lamp. After your TA has dimmed the classroom lights,
turn on the halogen lamp to the highest setting (depending on the lamp, there may be a
dim, and a bright setting). Note these lamps get very hot, so be careful. For this lab, we
will define the top of the globe as the Northern hemisphere, and the bottom as the
Southern hemisphere.

First off, it will be helpful to know the length of the entire arc at the 4 latitudes at which
you’ll be measuring later. Using the piece of string, measure the length of the arc at each
latitude and note it below.

Table 2.2: Total Arc Length
Latitude Total Length of Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Experiment #1: For the first experiment, arrange the globe so the axis of the “Earth”is
pointed at a right angle (90◦) to the direction of the “Sun”. Use your best judgement. Now
adjust the height of the desklamp so that the light bulb in the lamp is at the same approxi-
mate height as the equator.

There are several colored lines on the globe that form circles which are concentric with
the axis, and these correspond to certain latitudes. The red line is the equator, the black
line is 45o North, while the two blue lines are the Arctic (top) and Antarctic (bottom) circles.

Note that there is an illuminated half of the globe, and a dark half of the globe. The
line that separates the two is called the “terminator”. It is the location of sunrise or sunset.
Using the piece of string, we want to measure the length of each arc that is in “daylight”,
and the length that is in “night”. This is kind of tricky, and requires a bit of judgement as
to exactly where the terminator is located. So make sure you have a helper to help keep
the string exactly on the line of constant latitude, and get the advice of your lab partners
of where the terminator is (and it is probably best to do this more than once!). Fill in the
following table (4 points):

As you know, the Earth rotates once every 24 hours (= 1 Day). Each of the lines of
constant latitude represents a full circle that contains 360o. But note that these circles get
smaller in radius as you move away from the equator. The circumference of the Earth at the
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Table 2.3: Position #1: Equinox Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

equator is 40,075 km (or 24,901 miles). At a latitude of 45o, the circle of constant latitude
has a circumference of 28,333 km. At the arctic circles, the circle has a circumference of
only 15,979 km. This is simply due to our use of two coordinates (longitude and latitude)
to define a location on a sphere.

Since the Earth is a solid body, all of the points on Earth rotate once every 24 hours.
Therefore, the sum of the daytime and nighttime arcs you measured equals 24 hours! So, fill
in the following table (2 points):

Table 2.4: Position #1: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

18) The caption for Table 2.3 was “Equinox data”. The word Equinox means “equal
nights”, as the length of the nighttime is the same as the daytime. While your numbers in
Table 2.4 may not be exactly perfect, what do you conclude about the length of the nights
and days for all latitudes on Earth in this experiment? Is this result consistent with the
term Equinox? (3 points)

Experiment #2: Now we are going to re-orient the globe so that the (top) polar axis
points exactly away from the Sun and repeat the process of Experiment #1. Fill in the
following two tables (4 points):

19) Compare your results in Table 2.6 for +45o latitude with those for Minneapolis in
Table 2.1. Since Minneapolis is at a latitude of +45o, what season does this orientation of
the globe correspond to? (2 points)
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Table 2.5: Position #2: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Table 2.6: Position #2: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

20) What about near the poles? In this orientation what is the length of the nighttime at
the North pole, and what is the length of the daytime at the South pole? Is this consistent
with the trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (4
points)

Experiment #3: Now we are going to approximate the Earth-Sun orientation six months
after that in Experiment #2. To do this correctly, the globe and the lamp should now
switch locations. Go ahead and do this if this lab is confusing you—or you can simply
rotate the globe apparatus by 180o so that the North polar axis is tilted exactly towards the
Sun. Try to get a good alignment by looking at the shadow of the wooden axis on the
globe. Since this is six months later, it easy to guess what season this is, but let’s prove it!
Complete the following two tables (4 points):

Table 2.7: Position #3: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

21) As in question #19, compare the results found here for the length of daytime and
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Table 2.8: Position #3: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

nighttime for the +45o degree latitude with that for Minneapolis. What season does this
appear to be? (2 points)

22) What about near the poles? In this orientation, how long is the daylight at the North
pole, and what is the length of the nighttime at the South pole? Is this consistent with the
trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (2 points)

23) Using your results for all three positions (Experiments #1, #2, and #3) can you
explain what is happening at the Equator? Does the data for Quito in Table 2.1 make
sense? Why? Explain. (3 points)

We now have discovered the driver for the seasons: the Earth spins on an axis that is
inclined to the plane of its orbit (as shown in Figure 2.4). But the spin axis always points to
the same place in the sky (towards Polaris). Thus, as the Earth orbits the Sun, the amount
of sunlight seen at a particular latitude varies: the amount of daylight and nighttime hours
change with the seasons. In Northern Hemisphere Summer (approximately June 21st) there
are more daylight hours, at the start of the Autumn (∼ Sept. 20th) and Spring (∼ Mar.
21st) the days are equal to the nights. In the Winter (approximately Dec. 21st) the nights
are long, and the days are short. We have also discovered that the seasons in the Northern

27



and Southern hemispheres are exactly opposite. If it is Winter in Las Cruces, it is Summer
in Sydney (and vice versa). This was clearly demonstrated in our experiments, and is shown
in Figure 2.4.

Figure 2.4: The Earth’s spin axis always points to one spot in the sky, and it is tilted by
23.5o to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with latitude:
sometimes the North Pole is bathed in 24 hours of daylight, and sometimes in 24 hours of
night. The exact opposite is occurring in the Southern Hemisphere.

The length of the daylight hours is one reason why it is hotter in Summer than in Winter:
the longer the Sun is above the horizon the more it can heat the air, the land and the seas.
But this is not the whole story. At the North Pole, where there is constant daylight during
the Summer, the temperature barely rises above freezing! Why? We will discover the reason
for this now.

2.4 Elevation Angle and the Concentration of Sunlight

We have found out part of the answer to why it is warmer in summer than in winter: the
length of the day is longer in summer. But this is only part of the story–you would think
that with days that are 22 hours long during the summer, it would be hot in Alaska and
Canada during the summer, but it is not. The other affect caused by Earth’s tilted spin axis
is the changing height that the noontime Sun attains during the various seasons. Before we
discuss why this happens (as it takes quite a lot of words to describe it correctly), we want
to explore what happens when the Sun is higher in the sky. First, we need to define two new
terms: “altitude”, or “elevation angle”. As shown in the diagram in Fig. 2.5.

The Sun is highest in the sky at noon everyday. But how high is it? This, of course,
depends on both your latitude and the time of year. For Las Cruces, the Sun has an altitude
of 81◦ on June 21st. On both March 21st and September 20th, the altitude of the Sun at
noon is 57.5◦. On December 21st its altitude is only 34◦. Thus, the Sun is almost straight
overhead at noon during near the Summer Solstice, but very low during the Winter Solstice.
What difference can this possibly make? We now explore this using the other apparatus, the
elevation angle device, that accompanies this lab (the one with the protractor and flashlight).
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Figure 2.5: Altitude (“Alt”) is simply the angle between the horizon, and an object in the
sky. The smallest this angle can be is 0◦, and the maximum altitude angle is 90◦. Altitude
is interchangeably known as elevation.

Exercise #4: Using the elevation angle apparatus, we now want to measure what happens
when the Sun is at a higher or lower elevation angle. We mimic this by a flashlight mounted
on an arm that allows you to move it to just about any elevation angle. It is difficult to
exactly model the Sun using a flashlight, as the light source is not perfectly uniform. But
here we do as well as we can. Play around with the device.

24) Turn on the flashlight and move the arm to lower and higher angles. How does the
illumination pattern change? Does the illuminated pattern appear to change in brightness
as you change angles? Explain. (2 points)

Ok, now we are ready to begin to quantify this affect. Take a blank sheet of white paper
and tape it to the base so we have a more reflective surface. Now arrange the apparatus so
the elevation angle is 90◦. The illuminated spot should look circular. Measure the diameter
of this circle using a ruler.

25) The diameter of the illuminated circle is cm.

Do you remember how to calculate the area of a circle? Does the formula πR2 ring a bell?
R is the radius, not the diameter, so first you’ll need the radius of the circle.

The radius of the illuminated circle is cm.

The area of the circle of light at an elevation angle of 90◦ is cm2. (1
point)

Now, as you should have noticed at the beginning of this exercise, as you move the
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flashlight to lower and lower elevations, the circle changes to an ellipse. Now adjust the
elevation angle to be 45◦. Ok, time to introduce you to two new terms: the major axis and
minor axis of an ellipse. Both are shown in Fig. 2.6. The minor axis is the smallest
diameter, while the major axis is the longest diameter of an ellipse.

Figure 2.6: An ellipse with the major and minor axes defined.

Ok, now measure the lengths of the major (“a”) and minor (“b”) axes at 45◦:

26) The major axis has a length of a = cm, while the minor axis has a

length of b = cm.

The area of an ellipse is simply (π × a × b)/4. So, the area of

the ellipse at an elevation angle of 45◦ is: cm2 (1 point).

So, why are we making you measure these areas? Note that the black tube restricts the
amount of light coming from the flashlight into a cylinder. Thus, there is only a certain
amount of light allowed to come out and hit the paper. Let’s say there are “one hundred
units of light” emitted by the flashlight. Now let’s convert this to how many units of light
hit each square centimeter at angles of 90◦ and 45◦.

27) At 90◦, the amount of light per centimeter is 100 divided by the Area of circle

= units of light per cm2 (1 point).

28) At 45◦, the amount of light per centimeter is 100 divided by the Area of the ellipse

= units of light per cm2 (1 point).

29) Since light is a form of energy, at which elevation angle is there more energy per square
centimeter? Since the Sun is our source of light, what happens when the Sun is higher in
the sky? Is its energy more concentrated, or less concentrated? How about when it is low
in the sky? Can you tell this by looking at how bright the ellipse appears versus the circle?
(4 points)
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As we have noted, the Sun never is very high in the arctic regions of the Earth. In fact, at
the poles, the highest elevation angle the Sun can have is 23.5◦. Thus, the light from the
Sun is spread out, and cannot heat the ground as much as it can at a point closer to the
equator. That’s why it is always colder at the Earth’s poles than elsewhere on the planet.

You are now finished with the in-class portion of this lab. To understand why the Sun
appears at different heights at different times of the year takes a little explanation (and the
following can be read at home unless you want to discuss it with your TA). Let’s go back
and take a look at Fig. 2.3. Note that Polaris, the North Star, barely moves over the course
of a night or over the year—it is always visible. If you had a telescope and could point it
accurately, you could see Polaris during the daytime too. Polaris never sets for people in the
Northern Hemisphere since it is located very close to the spin axis of the Earth. Note that
as we move away from Polaris the circles traced by other stars get bigger and bigger. But
all of the stars shown in this photo are always visible—they never set. We call these stars
“circumpolar”. For every latitude on Earth, there is a set of circumpolar stars (the number
decreases as you head towards the equator).

Now let us add a new term to our vocabulary: the “Celestial Equator”. The Celestial
Equator is the projection of the Earth’s Equator onto the sky. It is a great circle that spans
the night sky that is directly overhead for people who live on the Equator. As you have now
learned, the lengths of the days and nights at the equator are nearly always the same: 12
hours. But we have also learned that during the Equinoxes, the lengths of the days and the
nights everywhere on Earth are also twelve hours. Why? Because during the equinoxes, the
Sun is on the Celestial Equator. That means it is straight overhead (at noon) for people
who live in Quito, Ecuador (and everywhere else on the equator). Any object that is on
the Celestial Equator is visible for 12 hours per night from everywhere on Earth. To try
to understand this, take a look at Fig. 2.7. In this figure is shown the celestial geometry
explicitly showing that the Celestial Equator is simply the Earth’s equator projected onto
the sky (left hand diagram). But the Earth is large, and to us, it appears flat. Since the
objects in the sky are very far away, we get a view like that shown in the right hand diagram:
we see one hemisphere of the sky, and the stars, planets, Sun and Moon rise in the east, and
set in the west. But note that the Celestial Equator exactly intersects East and West. Only
objects located on the Celestial Equator rise exactly due East, and set exactly due West. All
other objects rise in the northeast or southeast and set in the northwest or the southwest.
Note that in this diagram (for a latitude of 40◦) all stars that have latitudes (astronomers
call them “Declinations”, or “dec”) above 50◦ never set–they are circumpolar.

What happens is that during the year, the Sun appears to move above and below the
Celestial Equator. On, or about, March 21st the Sun is on the Celestial Equator, and each
day after this it gets higher in the sky (for locations in the Northern Hemisphere) until June
21st. After which it retraces its steps until it reaches the Autumnal Equinox (September
20th), after which it is South of the Celestial Equator. It is lowest in the sky on December
21st. This is simply due to the fact that the Earth’s axis is tilted with respect to its orbit,
and this tilt does not change. You can see this geometry by going back to the illuminated
globe model used in Exercise #3. If you stick a pin at some location on the globe away from
the equator, turn on the halogen lamp, and slowly rotate the entire apparatus around (while

31



Figure 2.7: The Celestial Equator is the circle in the sky that is straight overhead (“the
zenith”) of the Earth’s equator. In addition, there is a “North Celestial” pole that is the
projection of the Earth’s North Pole into space (that almost points to Polaris). But the
Earth’s spin axis is tilted by 23.5◦ to its orbit, and the Sun appears to move above and
below the Celestial Equator over the course of a year.

keeping the pin facing the Sun) you will notice that the shadow of the pin will increase and
decrease in size. This is due to the apparent change in the elevation angle of the “Sun”.
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Name:
Date:

2.5 Take Home Exercise (35 total points)

On a clean sheet of paper, answer the following questions:

1. Why does the Earth have seasons?

2. What is the origin of the term “Equinox”?

3. What is the origin of the term “Solstice”?

4. Most people in the United States think the seasons are caused by the changing distance
between the Earth and the Sun. Why do you think this is?

5. What type of seasons would the Earth have if its spin axis was exactly perpendicular
to its orbital plane? Make a diagram like Fig. 2.4.

6. What type of seasons would the Earth have if its spin axis was in the plane of its orbit?
(Note that this is similar to the situation for the planet Uranus.)

7. What do you think would happen if the Earth’s spin axis wobbled randomly around
on a monthly basis? Describe how we might detect this.

2.6 Possible Quiz Questions

1) What does the term “latitude” mean?
2) What is meant by the term “Equator”?
3) What is an ellipse?
4) What are meant by the terms perihelion and aphelion?
5) If it is summer in Australia, what season is it in New Mexico?

2.7 Extra Credit (make sure to ask your TA for permission before
attempting, 5 points)

We have stated that the Earth’s spin axis constantly points to a single spot in the sky. This
is actually not true. Look up the phrase “precession of the Earth’s spin axis”. Describe
what is happening and the time scale of this motion. Describe what happens to the timing
of the seasons due to this motion. Some scientists believe that precession might help cause
ice ages. Describe why they believe this.

33



Name:
Date:

3 Scale Model of the Solar System

3.1 Introduction

The Solar System is large, at least when compared to distances we are familiar with on a
day-to-day basis. Consider that for those of you who live here in Las Cruces, you travel
2 kilometers (or 1.2 miles) on average to campus each day. If you go to Albuquerque on
weekends, you travel about 375 kilometers (232.5 miles), and if you travel to Disney Land
for Spring Break, you travel ∼ 1,300 kilometers (∼ 800 miles), where the ‘∼’ symbol means
“approximately.” These are all distances we can mentally comprehend.

Now, how large is the Earth? If you wanted to take a trip to the center of the Earth
(the very hot “core”), you would travel 6,378 kilometers (3954 miles) from Las Cruces down
through the Earth to its center. If you then continued going another 6,378 kilometers you
would ‘pop out’ on the other side of the Earth in the southern part of the Indian Ocean.
Thus, the total distance through the Earth, or the diameter of the Earth, is 12,756 kilome-
ters (∼ 7,900 miles), or 10 times the Las Cruces-to-Los Angeles distance. Obviously, such
a trip is impossible–to get to the southern Indian Ocean, you would need to travel on the
surface of the Earth. How far is that? Since the Earth is a sphere, you would need to travel
20,000 km to go halfway around the Earth (remember the equation Circumference = 2πR?).
This is a large distance, but we’ll go farther still.

Next, we’ll travel to the Moon. The Moon, Earth’s natural satellite, orbits the Earth at
a distance of ∼ 400,000 kilometers (∼ 240,000 miles), or about 30 times the diameter of the
Earth. This means that you could fit roughly 30 Earths end-to-end between here and the
Moon. This Earth-Moon distance is ∼ 200,000 times the distance you travel to campus each
day (if you live in Las Cruces). So you can see, even though it is located very close to us, it
is a long way to the Earth’s nearest neighbor.

Now let’s travel from the Earth to the Sun. The average Earth-to-Sun distance, ∼ 150
million kilometers (∼ 93 million miles), is referred to as one Astronomical Unit (AU).
When we look at the planets in our Solar System, we can see that the planet Mercury, which
orbits nearest to the Sun, has an average distance of 0.4 AU and Pluto, the planet almost
always the furthest from the Sun, has an average distance of 40 AU. Thus, the Earth’s dis-
tance from the Sun is only 2.5 percent of the distance between the Sun and planet Pluto!!
Pluto is very far away!

The purpose of today’s lab is to allow you to develop a better appreciation for the distances
between the largest objects in our solar system, and the physical sizes of these objects rela-
tive to each other. To achieve this goal, we will use the length of the football field in Aggie
Memorial Stadium as our platform for developing a scale model of the Solar System. A scale
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model is simply a tool whereby we can use manageable distances to represent larger distances
or sizes (like the road map of New Mexico used in Lab #1). We will properly distribute our
planets on the football field in the same relative way they are distributed in the real Solar
System. The length of the football field will represent the distance between the Sun and the
planet Pluto. We will also determine what the sizes of our planets should be to appropriately
fit on the same scale. Before you start, what do you think this model will look like?

Below you will proceed through a number of steps that will allow for the development
of a scale model of the Solar System. For this exercise, we will use the convenient unit of
the Earth-Sun distance, the Astronomical Unit (AU). Using the AU allows us to keep our
numbers to manageable sizes.

SUPPLIES: a calculator, the football field in Aggie Memorial Stadium, and a collection of
different sized spherical-shaped objects

3.2 The Distances of the Planets From the Sun

Fill in the first and second columns of Table 6.1. In other words, list, in order of increasing
distance from the Sun, the planets in our solar system and their average distances from
the Sun in Astronomical Units (usually referred to as the “semi-major axis” of the planet’s
orbit). You can find these numbers in back of your textbook. (21 points)

Table 3.1: Planets’ average distances from Sun.
Average Distance From Sun

Planet AU Yards

Earth 1

Pluto 40 100

Next, we need to convert the distance in AU into the unit of a football field: the yard. This is
called a “scale conversion”. Determine the SCALED orbital semi-major axes of the planets,
based upon the assumption that the Sun-to-Pluto average distance in Astronomical Units
(which is already entered into the table, above) is represented by 100 yards, or goal-line to
goal-line, on the football field. To determine similar scalings for each of the planets, you
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must figure out how many yards there are per AU, and use that relationship to fill in the
values in the third column of Table 6.1.

3.3 Sizes of Planets

You have just determined where on the football field the planets will be located in our scaled
model of the Solar System. Now it is time to determine how large (or small) the planets
themselves are on the same scale.

We mentioned in the introduction that the diameter of the Earth is 12,756 kilometers,
while the distance from the Sun to Earth (1 AU) is equal to 150,000,000 km. We have also
determined that in our scale model, 1 AU is represented by 2.5 yards (= 90 inches).

We will start here by using the largest object in the solar system, the Sun, as an exam-
ple for how we will determine how large the planets will be in our scale model of the solar
system. The Sun has a diameter of ∼ 1,400,000 (1.4 million) kilometers, more than 100
times greater than the Earth’s diameter! Since in our scaled model 150,000,000 kilometers
(1 AU) is equivalent to 2.5 yards, how many inches will correspond to 1,400,000 kilometers
(the Sun’s actual diameter)? This can be determined by the following calculation:

Scaled Sun Diameter = Sun’s true diameter (km) × (90 in.)
(150,000,000 km)

= 0.84 inches

So, on the scale of our football field Solar System, the scaled Sun has a diameter of only 0.84
inches!! Now that we have established the scaled Sun’s size, let’s proceed through a similar
exercise for each of the nine planets, and the Moon, using the same formula:

Scaled object diameter (inches) = actual diameter (km) × (90 in.)
(150,000,000 km)

Using this equation, fill in the values in Table 6.2 (8 points).

Now we have all the information required to create a scaled model of the Solar System.
Using any of the items listed in Table 6.3 (spheres of different diameter), select the ones that
most closely approximate the sizes of your scaled planets, along with objects to represent
both the Sun and the Moon.

Designate one person for each planet, one person for the Sun, and one person for the
Earth’s Moon. Each person should choose the model object which represents their solar
system object, and then walk (or run) to that object’s scaled orbital semi-major axis on the
football field. The Sun will be on the goal line of the North end zone (towards the Pan Am
Center) and Pluto will be on the south goal line.

Observations:

On Earth, we see the Sun as a disk. Even though the Sun is far away, it is physically so
large, we can actually see that it is a round object with our naked eyes (unlike the planets,
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Table 3.2: Planets’ diameters in a football field scale model.
Object Actual Diameter (km) Scaled Diameter (inches)

Sun ∼ 1,400,000 0.84
Mercury 4,878
Venus 12,104
Earth 12,756 0.0075
Moon 3,476
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.0013

Table 3.3: Objects that Might Be Useful to Represent Solar System Objects
Object Diameter (inches)
Basketball 15
Tennis ball 2.5
Golf ball 1.625
Nickel 0.84
Marble 0.5
Peppercorn 0.08
Sesame seed 0.07
Poppy seed 0.04
Sugar grain 0.02
Salt grain 0.01
Ground flour 0.001

37



where we need a telescope to see their tiny disks). Let’s see what the Sun looks like from
the other planets! Ask each of the “planets” whether they can tell that the Sun is a round
object from their “orbit”. What were their answers? List your results here: (5 points):

Note that because you have made a “scale model”, the results you just found would be
exactly what you would see if you were standing on one of those planets!

3.4 Questions About the Football Field Model

When all of the “planets” are in place, note the relative spacing between the planets, and
the size of the planets relative to these distances. Answer the following questions using the
information you have gained from this lab and your own intuition:

1) Is this spacing and planet size distribution what you expected when you first began
thinking about this lab today? Why or why not? (10 points)

2) Given that there is very little material between the planets (some dust, and small bits of
rock), what do you conclude about the nature of our solar system? (5 points)
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3) Which planet would you expect to have the warmest surface temperature? Why? (2
points)

4) Which planet would you expect to have the coolest surface temperature? Why? (2
points)

5) Which planet would you expect to have the greatest mass? Why? (3 points)

6) Which planet would you expect to have the longest orbital period? Why? (2 points)

7) Which planet would you expect to have the shortest orbital period? Why? (2 points)

8) The Sun is a normal sized star. As you will find out at the end of the semester, it will
one day run out of fuel (this will happen in about 5 billion years). When this occurs, the
Sun will undergo dramatic changes: it will turn into something called a “red giant”, a cool
star that has a radius that may be 100× that of its current value! When this happens,
some of the innermost planets in our solar system will be “swallowed-up” by the Sun.
Calculate which planets will be swallowed-up by the Sun (5 points).
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3.5 Take Home Exercise (35 points total)

Now you will work out the numbers for a scale model of the Solar System for which the size
of New Mexico along Interstate Highway 25 will be the scale.

Interstate Highway 25 begins in Las Cruces, just southeast of campus, and continues north
through Albuquerque, all the way to the border with Colorado. The total distance of I-25
in New Mexico is 455 miles. Using this distance to represent the Sun to Pluto distance (40
AU), and assuming that the Sun is located at the start of I-25 here in Las Cruces and Pluto
is located along the Colorado-New Mexico border, you will determine:

• the scaled locations of each of the planets in the Solar System; that is, you will deter-
mine the city along the highway (I-25) each planet will be located nearest to, and how
far north or south of this city the planet will be located. If more than one planet is
located within a given city, identify which street or exit the city is nearest to.

• the size of the Solar system objects (the Sun, each of the planets) on this same scale,
for which 455 miles (∼ 730 kilometers) corresponds to 40 AU. Determine how large
each of these scaled objects will be (probably best to use feet; there are 5280 feet per
mile), and suggest a real object which well represents this size. For example, if one of
the scaled Solar System objects has a diameter of 1 foot, you might suggest a soccer
ball as the object that best represents the relative size of this object.

If you have questions, this is a good time to ask!!!!!!

1. List the planets in our solar system and their average distances from the Sun in units
of Astronomical Units (AU). Then, using a scale of 40 AU = 455 miles (1 AU = 11.375
miles), determine the scaled planet-Sun distances and the city near the location of this
planet’s scaled average distance from the Sun. Insert these values into Table 6.4, and
draw on your map of New Mexico (on the next page) the locations of the solar system
objects. (20 points)

2. Determine the scaled size (diameter) of objects in the Solar System for a scale in which
40 AU = 455 miles, or 1 AU = 11.375 miles). Insert these values into Table 6.5. (15
points)

Scaled diameter (feet) = actual diameter (km) × (11.4 mi. × 5280 ft/mile)
150,000,000 km
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Table 3.4: Planets’ average distances from Sun.
Average Distance from Sun

Planet in AU in Miles Nearest City

Earth 1 11.375

Jupiter 5.2

Uranus 19.2

Pluto 40 455 3 miles north of Raton

Table 3.5: Planets’ diameters in a New Mexico scale model.
Object Actual Diameter (km) Scaled Diameter (feet) Object

Sun ∼ 1,400,000 561.7
Mercury 4,878
Venus 12,104
Earth 12,756 5.1 height of 12 year old
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.87 soccer ball
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3.6 Possible Quiz Questions

1. What is the approximate diameter of the Earth?

2. What is the definition of an Astronomical Unit?

3. What value is a “scale model”?

3.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Later this semester we will talk about comets, objects that reside on the edge of our Solar
System. Most comets are found either in the “Kuiper Belt”, or in the “Oort Cloud”. The
Kuiper belt is the region that starts near Pluto’s orbit, and extends to about 100 AU. The
Oort cloud, however, is enormous: it is estimated to be 40,000 AU in radius! Using your
football field scale model answer the following questions:

1) How many yards away would the edge of the Kuiper belt be from the northern goal
line at Aggie Memorial Stadium?

2) How many football fields does the radius of the Oort cloud correspond to? If there
are 1760 yards in a mile, how many miles away is the edge of the Oort cloud from the north-
ern goal line at Aggie Memorial Stadium?
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Name:
Date:

4 Density

4.1 Introduction

As we explore the objects in our Solar System, we quickly find out that these objects come in
all kinds of shapes and sizes. The Sun is the largest object in the Solar System and is so big
that more than 1.3 million Earths could fit inside. But the mass of the Sun is only 333,000
times that of the Earth. If the Sun were made of the same stuff as the Earth, it should have
a mass that is 1.3 million times the mass of the Earth—obviously, the Sun and the Earth
are not composed of the same stuff! What we have just done is a direct comparison of the
densities of the Sun and Earth. Density is extremely useful for examining what an object is
made of, especially in astronomy, where nearly all of the objects of interest are very far away.

In today’s lab we will learn about density, both how to measure it, and how to use it
to gain insight into the composition of objects. The average or “mean” density is defined
as the mass of the object divided by its volume. We will use grams (g) for mass and cubic
centimeters (cm3) for volume. The mass of an object is a measure of how many protons
and neutrons (the “building blocks” of atoms) the object contains. Denser elements, such as
gold, possess many more protons and neutrons within a cubic centimeter than do less dense
materials such as water.

4.2 Mass versus Weight

Before we go any further, we need to talk about mass versus weight. The weight of an object
is a measure of the force exerted upon that object by the gravitational attraction of a large,
nearby body. An object here on the Earth’s surface with a mass of 454 grams (grams and
kilograms are a measure of the mass of an object) has a weight of one pound. If we do not
remove or add any protons or neutrons to this object, its mass and density will not change
if we move the object around. However, if we move this object to some other location in the
Solar System, where the gravitational attraction is different then what it is at the Earth’s
surface, than the weight of this object will be different. For example, if you weigh 150 lbs on
Earth, you will only weigh 25 lbs on the Moon, but would weigh 355 lbs on Jupiter. Thus,
weight is not a useful measurement when talking about the bulk properties of an object—
we need to use a quantity that does not depend on where an object is located. One such
property is mass. So, even though you often see conversions between pounds (unit of weight)
and kilograms (unit of mass), those conversions are only valid on the Earth’s surface (the
astronauts floating around inside the International Space Station obviously still have mass,
even though they are “weightless”).
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4.3 Volume

Now that we have discussed mass, we need to talk about the other quantity in our equation
for density, and that is volume. Volume is pretty easy to calculate for objects with regular
shapes. For example, you probably know how to calculate the volume of a cube: V = s × s
× s = s3, where s is the length of a side of the cube. Let us generalize this to any rectan-
gular solid. In Figure 4.1 we show a drawing for a box that has sides labeled with “length,”
“width,” and “height.” What is its volume? Its volume is V = length × width × height.
If we told you that the length = 10 cm, the height = 5 cm, and the depth = 5 cm, what is
the box’s volume? V = 10 cm × 5 cm × 5 cm = 250 cubic cm = 250 cm3. Do you now see
why volume is measured in cm3? This where that comes from—everyday objects are “three
dimensional” in that they have volume (cm3, m3, km3, inches3, miles3).

Figure 4.1: A rectangular solid has sides of length, width, and height.

Now that we understand how volume is calculated, how do we do it for objects that
have more complicated shapes, like a coke bottle, a car engine, or a human being? You
may have heard the story of Archimedes. Archimedes was asked by the King of Syracuse
(in ancient Greece) to find out if the dentist making a gold crown for one of his teeth had
embezzled some of the gold the king had given him to make this crown (by adding lead, or
another cheaper metal to the crown while keeping some of the gold for himself). Archimedes
pondered the problem for a while and hit on the solution while taking a bath. Archimedes
became so excited he ran out into the street naked shouting “Eureka!” What Archimedes
realized was that you can use water to figure out a solid object’s volume. For example, you
could fill a teacup to the brim with water and drop an object in the teacup. The amount of
water that overflows and collects in the saucer has the same volume as that object. All you
need to know to figure out the object’s volume is the conversion from the amount of liquid
water to its volume in cm3. An example of the process is shown in Fig. 4.2.

In the metric system a gram was defined to be equal to one cubic cm of water, and one
cubic cm of water is identical to 1 ml (where “ml” stands for milliliter, i.e., one thousandth
of a liter). Today we will measure the water displacement for a variety of objects, and use
this conversion directly: 1 ml = 1 cm3.
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In this lab you will first determine the densities of ten different natural substances, and
then we will show you how astronomers use density to give us insight into the nature of
various objects in our Solar System.

Exercise #1: Measuring Masses, Volumes and Densities

First, we measure the masses of objects using a triple beam balance. At your table, your
TA has given you a plastic box with a number of compartments containing ten different sub-
stances, a triple beam balance, several graduated cylinders, digital calipers, and a container
of water. Our first task is to measure the masses of all ten of the objects using the triple
beam balance. Note: these balances are very sensitive, and quite expensive, so treat them
with care. The first thing you should do is make sure all of the weights1 are moved to their
leftmost positions so that their pointers are all on zero. The two larger weights will sit in
detents, the smaller one just needs to be lined up with the zero mark. When this is done,
and there is no mass on the steel “pan,” the lines on the right hand part of the scale should
line-up with each other exactly. The scale must be balanced before you begin, and the TA,
or their helper, has already done this for you. If the two lines do not line-up, ask your TA
for help.

To measure the mass of one of the objects, put it on the pan and slide the weights over
to the right. Note that for this lab, none of our objects require movement of the largest
weight, just the two smaller weights. You should attempt to read the mass of the object to
two significant figures—it is possible, but quite unlikely, that an object will have a mass of
exactly 10.0 or 20.0 g. If the sliding weight on the “10 g” beam falls between units, estimate
exactly where it is so that you get more precise numbers like 22.15 g (all of your masses
should be measured to two places beyond the decimal!).

Task #1: Fill in column #2 (“Mass”) of Table 4.1 by measuring the masses of your ten
objects. (10 points)

Now we are going to measure the volumes of these ten objects using the method of
Archimedes. Pour some water into the graduated cylinder and make a note of the initial
volume. Drop the first object into the graduated cylinder, and read off the volume again.
The increase in volume is due to the object displacing the water. Record the change in
volume in the table. Repeat the process for all of your objects. Note that the smaller the
object, the smaller the graduated cylinder you should use (just make sure you don’t get the
object stuck). Using a big cylinder with a small object will lead to errors, as the big cylinders

1This is the historical name for these sliding masses, as the first scales like these were used to measure
weight.
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Figure 4.2: The rectangular object displaces 10 ml of water. Therefore, it has a volume of
10 ml = 10 cm3.

are harder to read to high precision. Ask your TA about how to “read the miniscus” if you
do not know what that means.

Task #2: Fill in columns 3 and 4 (again, remember for column #4, that 1 ml = 1 cm3).
(10 points)

Task #3: Fill in the Density column in Table 4.1. (5 points)

Question # 1: Think about the process you used to determine the volume. How accurate
do you think it is? Why? How could we improve this technique? (5 points)

We chose to supply you with several rectangular solids so that we could check on how
well you measured the volume using the Archimedes method. Now we want you to actually
measure the volume of the five metal “cubes” (do not assume they are perfect cubes!) using
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Table 4.1: The Masses, Volumes, and Densities of the Different Objects.
Object Mass (g) Volume of Water Volume Density

(ml) cm3 g/cm3

Column #1 #2 #3 #4 #5

Obsidian
Gabbro
Pumice2

Silicon
Magnesium
Copper
Iron (Steel)
Zinc
Mystery
Aluminum

2It is tricky to measure the volume of Pumice, but find a way to submerge the entire stone.

the digital caliper. You will measure the lengths of their sides in mm, but remember to
convert to cm (1 cm = 10 mm). The digital caliper is easy to operate, but requires two
actions: 1) there is a button that switches between inches and millimeters, we want mm,
and 2) they must be “zeroed”. To zero the caliper, use the thumbwheel to ensure the jaws
are closed, and then hit the “zero” button. Open the caliper slowly to the width necessary
to measure the cube, and then close them tight. Read off the number. It is not a bad idea
to zero the caliper before each object, as repeated motion can cause small errors to creep-in.

Task #4: Fill in Table 4.2. Copy the mass measurements from Table 4.1 for the five metal
“cubes”. Calculate the volumes of these “cubes” using the caliper. (5 points)

Table 4.2: The Masses, Volumes, and Densities of the Metal Cubes.
Object Mass (g) l × w × h = Volume cm3 Density g/cm3

Copper
Iron (Steel)
Zinc
Mystery
Aluminum

Question #2: Compare the two sets of densities you found for each of the five metal
cubes. How close are they? Assuming the second method was better, which substance had
the biggest error? Why do you think that happened? (5 points)
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Question #3: One of the objects in our table was labeled as a “mystery” metal. This
particular substance is composed of two metals, called an “alloy.” You have already
measured the density of the two metals that compose this alloy. We now want you to figure
out which of these two metals are in this alloy. Note that this particular alloy is a 50-50
mixture! So its mean density is (Metal A + Metal B)/2.0. What are these two metals? Did
its color help you decide? (3 points)

You have just used density to attempt to figure out the composition of an unknown object.
Obviously, we had to tell you additional information to allow you to derive this answer.
Scientists are not so lucky, they have to figure out the compositions of objects without such
hints (though they have additional techniques besides density to determine what something
is made of–you will learn about some of these this semester).

Exercise #2: Using Density to Understand the Composition of Planets.

We now want to show you how density is used in astronomy to figure out the composi-
tions of the planets, and other astronomical bodies. As part of Exercise #1, you measured
the density of three rocks: Obsidian, Gabbro, and Pumice. All three of these rocks are the
result of volcanic eruptions. Even though they are volcanic in origin (“igneous rocks”), both
Obsidian and Gabbro have densities similar to most of the rocks on the Earth’s surface. So,
what elements are found in Obsidian and Gabbro? Their chemistries are quite similar. Ob-
sidian is 75% Silicon dioxide (SiO2), with a little bit (25%) of Magnesium (Mg) and Iron (Fe)
oxides (MgO, and Fe3O4). Gabbro has the same elements, but less Silicon dioxide (∼ 50%),
and more Magnesium and Iron.

Question #4: You measured the densities of (pure) silicon, iron and magnesium in
Exercise #1. Compare the density of Gabbro and Obsidian to that of pure silicon. Can
you tell that there must be some iron and/or magnesium in these minerals? How? Which
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of these two elements must dominate? Were your density measurements good enough to
demonstrate that Gabbro has less silicon than Obsidian? (4 points)

Now let’s compare the densities of these rocks to two familiar objects: the Earth and the
Moon. We have listed the mean densities of the Earth and Moon in Table 4.3, along with
the density of the Earth’s crust. As you can see, the mean density of the Earth’s crust is
similar to the value you determined for Gabbro and/or Obsidian–it better be, as these rocks
are from the Earth’s crust!

Table 4.3: Densities of the Earth and Moon
Object Density g/cm3

Earth 5.5
Moon 3.3

Earth’s Crust 3.0

Question #5: Compare the mean densities of the Earth’s crust and the Moon. The
leading theory for the formation of the Moon is that a small planet crashed into the Earth
4.3 billion years ago, and blasted off part of the Earth’s crust. This material went into
orbit around the Earth, and condensed to form the Moon. Do the densities of the Earth’s
crust and the Moon support this idea? How? (4 points)
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Question #6: If you were asked “What are the main elements that make-up the Moon?”,
what would your answer be? Why? (2 points)

It is clear from Table 4.3, that the mean density of the whole Earth is much higher than
the density of its crust. There must be denser material below the crust, deep inside the Earth.

Question #7: Given that the mean density of the Earth’s crust is 3.0 g/cm3, and the
mean density of the whole Earth is 5.5 g/cm3, what (common) element do you suppose is
partially responsible for the higher mean density of the whole Earth? If we guess, and say
that the Earth is a 50-50 mixture of this element, and the crust material, what density do
you calculate? Does the resulting density compare with that for the whole Earth? (4
points)

Now let’s return to the rocks in our set of objects. We included Pumice into this set to
show you that nature can sometimes surprise you—have you ever seen a rock that floats?
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Would it surprise you to find out that Pumice has almost the same composition as Gabbro
and Obsidian? It is mostly SiO2! So how can this rock float?! Let’s try to answer this.

Question #8: If Pumice has the same basic composition as Gabbro, how might it have
such a low density? [Hint: think about a boat. As you have found out, cubes of pure
metals do not float. But then how does a boat made of iron (steel) or aluminum actually
float? What is found in the boat that fills most of its volume?] (2 points)

Question #9: Dry air has a density of 0.0012 g/cm3, let’s make an estimate for how
much air must be inside Pumice to give it the density you measured. Note: this is like the
alloy problem you worked on above, but the densities of one of the two components in the
alloy is essentially zero. (6 points)

You measured the volume of the piece of Pumice along with its mass, and then calculated
its density. We stated that density = mass/volume. But you could re-arrange this equation
to read volume = mass/density. Assume that the density of the material that
comprises the solid parts of Pumice is the same as that for Gabbro.

a) What would be the volume of a piece of Gabbro that has the same mass as your piece of
Pumice?

Volume(Gabbro) = Mass(Pumice)/Density(Gabbro) = cm3

b) Now take the value of the volume you just calculated and divide it by the volume of the
Pumice stone that you measured:

r = Volume(Gabbro)/Volume(Pumice) = %

This ratio, “r”, shows you how much of the volume of Pumice is occupied by rocky
material. The volume of Pumice occupied by “air” is:

1 - r = %

Pumice is formed when lava is explosively ejected from a volcano. Deep in the volcano the
liquid rock is under high pressure and mixed with gas. When this material is explosively
ejected, it is shot into a low pressure environment (air!) and quickly expands. Gas bubbles
get trapped inside the rock, and this leads to its unusually low density.
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Date:

4.4 Take Home Exercise (35 points total)

For the take-home part of this lab, we are going to explore the densities and compositions
of other objects in the Solar System.

1. Use your textbook, class notes, or other sources to fill in the following table (10
points):

Object Average Density (g/cm3)

Sun
Mercury
Venus
Mars
Ceres (largest asteroid) 2.0
Jupiter
Saturn
Titan (Saturn’s largest moon)
Uranus
Neptune
Pluto
Comet Halley (nucleus) 0.1

2. Mercury, Venus, Earth, and Mars are classified as Terrestrial planets (“Terrestrial”
means Earth-like). Do they have similar densities? Do you think they have similar
compositions? Why/Why not? (3 points)

3. Jupiter, Saturn, Uranus and Neptune are classified as Jovian planets (“Jovian” means
Jupiter-like). Why do you think that is? Compare the densities of the Jovian planets
to that of the Sun. Do you think they are made of similar materials? Why/why not?
(6 points)
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4. Saturn has an unusual density. What would happen if you could put Saturn into a
huge pool/body of water?? (Remember water has a density of 1 g/cm3, and recall the
density and behavior of Pumice.) (2 points)

5. The densities of Ceres, Titan and Pluto are very similar. Most astronomers believe
that these three bodies contain large quantities of water ice. If we assume roughly half
of the volume of these bodies is due to water (density = 1 g/cm3) and half from some
other material, what is the approximate mean density of this other material? Hint:
this is identical to the alloy problem you worked-on in lab:

Density(Ceres) = (1.0 g/cm3 + X g/cm3)/2.0

Just solve for “X” (if this hard for you, see the section “Solving for X” in Appendix
A at the end of this manual). What material have we been dealing with in this lab
that has a density with a value similar to “X”? What do you conclude about the
composition of Ceres, Titan and Pluto? (8 points)

6. The nucleus of comet Halley has a very low density. We know that comets are mostly
composed of water and other ices, but those other ices still have a higher density than
that measured for Halley’s comet. So, how can we possibly explain this low density?
[Hint: Look back at Question #9. Why is Pumice so light, even though it is a silicate
rock?] What does this imply for the nucleus of comet Halley?!!] (6 points)
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4.5 Possible Quiz Questions

1. What is the difference between mass and weight?

2. How do you calculate density?

3. What are the physical units on density?

4. How do astronomers use density to study planets?

5. Does the shape of an object affect its density?

4.6 Extra Credit (ask your TA for permission before attempting,
5 points)

Look up some information about the element Mercury (chemical symbol “Hg”). Note that
at room temperature, Mercury is a liquid. You found out above that, depending on density,
some objects will float in water (like pumice). What is the density of Mercury? So, if you
had a beaker full of Mercury, which of the metals you experimented with in this lab do you
think would float in Mercury? In Question # 7, we discussed that the core of the Earth is
much more dense than its crust, and concluded that there must be a lot of iron at the center
of the Earth. Given what you have just found out about rather dense materials floating in
Mercury, apply this knowledge to discuss why the Earth’s core is made of molten (=liquid)
iron, while the crust is made of silicates.
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5 Phases of the Moon

5.1 Introduction

Every once in a while, your teacher or TA is confronted by a student with the question
“Why can I see the Moon today, is something wrong?”. Surprisingly, many students have
never noticed that the Moon is visible in the daytime. The reason they are surprised is
that it confronts their notion that the shadow of the Earth is the cause of the phases–it is
obvious to them that the Earth cannot be causing the shadow if the Moon, Sun and Earth
are simultaneously in view! Maybe you have a similar idea. You are not alone, surveys of
science knowledge show that the idea that the shadow of the Earth causes lunar phases is
one of the most common misconceptions among the general public. Today, you will learn
why the Moon has phases, the names of these phases, and the time of day when these phases
are visible.

Even though they adhered to a “geocentric” (Earth-centered) view of the Universe, it
may surprise you to learn that the ancient Greeks completely understood why the Moon has
phases. In fact, they noticed during lunar eclipses (when the Moon does pass through the
Earth’s shadow) that the shadow was curved, and that the Earth, like the Moon, must be
spherical. The notion that Columbus feared he would fall of the edge of the flat Earth is
pure fantasy—it was not a flat Earth that was the issue of the time, but how big the Earth
actually was that made Columbus’ voyage uncertain.

The phases of the Moon are cyclic, in that they repeat every month. In fact the word
“month”, is actually an Old English word for the Moon. That the average month has 30
days is directly related to the fact that the Moon’s phases recur on a 29.5 day cycle. Note
that it only takes the Moon 27.3 days to orbit once around the Earth, but the changing
phases of the Moon are due to the relative to positions of the Sun, Earth, and Moon. Given
that the Earth is moving around the Sun, it takes a few days longer for the Moon to get to
the same relative position each cycle.

Your textbook probably has a figure showing the changing phases exhibited by the Moon
each month. Generally, we start our discusion of the changing phases of the Moon at “New
Moon”. During New Moon, the Moon is invisible because it is in the same direction as the
Sun, and cannot be seen. Note: because the orbit of the Moon is tilted with respect to the
Earth’s orbit, the Moon rarely crosses in front of the Sun during New Moon. When it does,
however, a spectacular “solar eclipse” occurs.

As the Moon continues in its orbit, it becomes visible in the western sky after sunset a
few days after New Moon. At this time it is a thin “crescent”. With each passing day, the
cresent becomes thicker, and thicker, and is termed a “waxing” crescent. About seven days
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after New Moon, we reach “First Quarter”, a phase when we see a half moon. The visible,
illuminated portion of the Moon continues to grow (“wax”) until fourteen days after New
Moon when we reach “Full Moon”. At Full Moon, the entire, visible surface of the Moon is
illuminated, and we see a full circle. After Full Moon, the illuminated portion of the Moon
declines with each passing day so that at three weeks after New Moon we again see a half
Moon which is termed “Third” or “Last” Quarter. As the illuminated area of the Moon is
getting smaller each day, we refer to this half of the Moon’s monthly cycle as the “waning”
portion. Eventually, the Moon becomes a waning crescent, heading back towards New Moon
to begin the cycle anew. Between the times of First Quarter and Full Moon, and between
Full Moon and Third Quarter, we sometimes refer to the Moon as being in a “gibbous”
phase. Gibbous means “hump-backed”. When the phase is increasing towards Full Moon,
we have a “waxing gibbous” Moon, and when it is decreasing, the “waning gibbous” phases.

The objective of this lab is to improve your understanding of the Moon phases [a topic that
you WILL see on future exams!]. This concept, the phases of the Moon, involves

1. the position of the Moon in its orbit around the Earth,

2. the illuminated portion of the Moon that is visible from here in Las Cruces, and

3. the time of day that a given Moon phase is at the highest point in the sky as seen from
Las Cruces.

You will finish this lab by demonstrating to your instructor that you do clearly understand
the concept of Moon phases, including an understanding of:

• which direction the Moon travels around the Earth

• how the Moon phases progress from day-to-day

• at what time of the day the Moon is highest in the sky at each phase

Materials

• small spheres (representing the Moon), with two different colored hemispheres. The
dark hemisphere represents the portion of the Moon not illuminated by the Sun.

• flashlight (representing the Sun)

• yourself (representing the Earth, and your nose Las Cruces!)

You will use the colored sphere and flashlight as props for this demonstration. Carefully
read and thoroughly answer the questions associated with each of the five Exercises on the
following pages. [Don’t be concerned about eclipses as you answer the questions in these
Exercises]. Using the dual-colored sphere to represent the Moon, the flashlight to represent
the Sun, and a member of the group to represent the Earth (with that person’s nose repre-
senting Las Cruces’ location), ‘walk through’ and ‘rotate through’ the positions indicated in
the Exercise figures to fully understand the situation presented.

Note that there are additional questions at the end.
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Work in Groups of Three People!

5.2 Exercise 1 (10 points)

The figure below shows a “top view” of the Sun, Earth, and eight different positions (1-8) of
the Moon during one orbit around the Earth. Note that the distances shown are not drawn
to scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s entire
surface that is illuminated for the eight positions (1-8) shown.

Ranking Order: Greatest A B C D E F G H Least

Or, the amount of the entire surface of the Moon illuminated by sunlight is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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5.3 Exercise 2 (10 points)

The figure below shows a “top view” of the Sun, Earth, and six different positions (1-6) of
the Moon during one orbit of the Earth. Note that the distances shown are not drawn to
scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s illuminated
surface that is visible from Earth for the six positions (1-6) shown.

Ranking Order: Greatest A B C D E F Least

Or, the amount of the Moon’s illuminated surface visible from Earth is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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5.4 Exercise 3 (10 points)

Shown below are different phases of the Moon as seen by an observer in the Northern
Hemisphere.

A B C D E

Ranking Instructions: Beginning with the waxing gibbous phase of the Moon, rank all
five Moon phases shown above in the order that the observer would see them over the next
four weeks (write both the picture letter and the phase name in the space provided!).

Ranking Order:

1) Waxing Gibbous

2)

3)

4)

5)

Or, all of these phases would be visible at the same time: (indicate with a check mark).
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5.5 Lunar Phases, and When They Are Observable

The next three exercises involve determining when certain lunar phases can be observed.
Or, alternatively, determining the approximate time of day or night using the position and
phase of the Moon in the sky.

In Exercises 1 and 2, you learned about the changing geometry of the Earth-Moon-Sun
system that is the cause of the phases of the Moon. When the Moon is in the same direction
as the Sun, we call that phase New Moon. During New Moon, the Moon rises with the Sun,
and sets with the Sun. So if the Moon’s phase was New, and the Sun rose at 7 am, the Moon
also rose at 7 am–even though you cannot see it! The opposite occurs at Full Moon: at Full
Moon the Moon is in the opposite direction from the Sun. Therefore, as the Sun sets, the
Full Moon rises, and vice versa. The Sun reaches its highest point in the sky at noon each
day. The Full Moon will reach the highest point in the sky at midnight. At First and Third
quarters, the Moon-Earth-Sun angle is a right angle, that is it has an angle of 90◦ (positions
3 and 6, respectively, in the diagram for exercise #2). At these phases, the Moon will rise or
set at either noon, or midnight (it will be up to you to figure out which is which!). To help
you with exercises 4 through 6, we include the following figure detailing when the observed
phase is highest in the sky.
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5.6 Exercise 4 (6 points)

In the set of figures below, the Moon is shown in the first quarter phase at different times of
the day (or night). Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would be seen, and write
it on each panel of the figure.
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5.7 Exercise 5 (6 points)

In the set of figures below, the Moon is shown overhead, at its highest point in the sky, but
in different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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5.8 Exercise 6 (6 points)

In the two sets of figures below, the Moon is shown in different parts of the sky and in
different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.

65



5.9 Demonstrating Your Understanding of Lunar Phases

After you have completed the six Exercises and are comfortable with Moon phases, and how
they relate to the Moon’s orbital position and the time of day that a particular Moon phase
is highest in the sky, you will be verbally quizzed by your instructor (without the Exercises
available) on these topics. You will use the dual-colored sphere, and the flashlight, and a
person representing the Earth to illustrate a specified Moon phase (appearance of the Moon
in the sky). You will do this for three different phases. (17 points)
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Name:
Date:

5.10 Take-Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. If the Earth was one-half as massive as it actually is, how would the time interval
(number of days) from one Full Moon to the next in this ‘small Earth mass’ situa-
tion compare to the actual time interval of 29.5 days between successive Full Moons?
Assume that all other aspects of the Earth and Moon system, including the Moon’s
orbital semi-major axis, the Earth’s rotation rate, etc. do not change from their cur-
rent values. (15 points)

2. What (approximate) phase will the Moon be in one week from today’s lab? (5 points)

3. If you were on Earth looking up at a Full Moon at midnight, and you saw an astronaut
at the center of the Moon’s disk, what phase would the astronaut be seeing the Earth
in? Draw a diagram to support your answer. (15 points)

5.11 Possible Quiz Questions

1) What causes the phases of the Moon?
2) What does the term “New Moon” mean?
3) What is the origin of the word “Month”?
4) How long does it take the Moon to go around the Earth once?
5) What is the time interval between successive New Moons?

5.12 Extra Credit (make sure you get permission from your TA
before attempting, 5 points)

Write a one page essay on the term “Blue Moon”. Describe what it is, and how it got its
name.
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Name:

Date:

6 Surface of the Moon

6.1 Introduction

One can learn a lot about the Moon by looking at the lunar surface. Even before astronauts
landed on the Moon, scientists had enough data to formulate theories about the formation
and evolution of the Earth’s only natural satellite. However, since the Moon rotates once
for every time it orbits around the Earth, we can only see one side of the Moon from the
surface of the Earth. Until spacecraft were sent to orbit the Moon, we only knew half the
story.

The type of orbit our Moon makes around the Earth is called a synchronous orbit. This
phenomenon is shown graphically in Figure 6.1 below. If we imagine that there is one large
mountain on the hemisphere facing the Earth (denoted by the small triangle on the Moon),
then this mountain is always visible to us no matter where the Moon is in its orbit. As the
Moon orbits around the Earth, it turns slightly so we always see the same hemisphere.

Figure 6.1: The Moon’s synchronous orbit. (Not drawn to scale.)

On the Moon, there are extensive lava flows, rugged highlands and many impact craters
of all sizes. The overlapping of these features implies relative ages. Because of the lack of
ongoing mountain building processes, or weathering by wind and water, the accumulation
of volcanic processes and impact cratering is readily visible. Thus by looking at the images
of the Moon, one can trace the history of the lunar surface.
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• Lab Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages; to
use pictures of the Moon to deduce relative ages and formation processes of surface
features

• Materials: Moon pictures, ruler, calculator

6.2 Craters and Maria

A crater is formed when a meteor from space strikes the lunar surface. The force of the
impact obliterates the meteorite and displaces part of the Moon’s surface, pushing the edges
of the crater up higher than the surrounding rock. At the same time, more displaced material
shoots outward from the crater, creating rays of ejecta. These rays of material can be seen
as radial streaks centered on some of the craters in some of the pictures you will be using
for your lab today. As shown in Figure 6.2, some of the material from the blast “flows”
back towards the center of the crater, creating a mountain peak. Some of the craters in the
photos you will examine today have these “central peaks”. Figure 6.2 also shows that the
rock beneath the crater becomes fractured (full of cracks).

Figure 6.2: Formation of an impact crater.

Soon after the Moon formed, its interior was mostly liquid. It was continually being hit by
meteors, and the energy (heat) from this period of intense cratering was enough to liquefy
the Moon’s interior. Every so often, a very large meteor would strike the surface, and
crack the Moon′s crust. The over-pressured “lava” from the Moon’s molten mantle then
flowed up through the cracks made by the impact. The lava filled in the crater, creating a
dark, smooth “sea”. Such a sea is called a mare (plural: maria). Sometimes the amount of
lava that came out could overfill the crater. In those cases, it spilled out over the crater’s
edges and could fill in other craters as well as cover the bases of the highlands, the rugged,
rocky peaks on the surface of the Moon.
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6.3 Relative Ages on the Moon

Since the Moon does not have rain or wind erosion, astronomers can determine which features
on the Moon are older than others. It all comes down to counting the number of craters a
feature has. Since there is nothing on the Moon that can erase the presence of a crater, the
more craters something has, the longer it must have been around to get hit. For example, if
you have two large craters, and the first crater has 10 smaller craters in it, while the second
one has only 2 craters in it, we know that the first crater is older since it has been there long
enough to have been hit 10 times. If we look at the highlands, we see that they are covered
with lots and lots of craters. This tells us that in general, the highlands are older than the
maria, which have fewer craters. We also know that if we see a crater on top of a mare, the
mare is older. It had to be there in the first place to get hit by the meteor. Crater counting
can tell us which features on the Moon are older than other features, but it cannot tell us
the absolute age of the feature. To determine this, we need to use radioactive dating or some
other technique.

6.4 Lab Stations

In this lab you will be using a three-ring binder that contains images of the Moon divided
into separate sections, or “stations”. At some stations we present data comparing the Moon
to the Earth. Using your understanding of simple physical processes here on Earth and
information from the class lecture and your reading, you will make observations and draw
logical conclusions in much the same way that a planetary geologist would.

You should work in groups of 2–4 people, with one binder for each group. The binders
contain separate sections, or “stations,” with the photographs and/or images for each spe-
cific exercise. Each group must go through all the stations, and consider and discuss each
question and come to a conclusion. Remember to back up your answers with rea-
sonable explanations, and be sure to answer all of the questions. While you should
discuss the questions as a group, be sure to write down one group answer for each question.
The take-home questions must be done on your own. Answers for the take-home ques-
tions that are exact duplicates of those of other members of your group will not
be acceptable.

Station 1: Our first photograph (#1) is that of the full Moon. It is obvious that the Moon
has dark regions, and bright regions. The largest dark regions are the “maria,” while the
brighter regions are the “highlands.” In image #2, the largest features of the full Moon
are labeled. The largest of the maria on the Moon is Mare Imbrium (the “Sea of Showers”),
and it is easily located in the upper left quadrant of image #2. Locate Mare Imbrium. Let
us take a closer look at Mare Imbrium.

Image #3 is from the Lunar Orbiter IV. Before the Apollo missions landed humans on the
Moon, NASA sent several missions to the Moon to map its surface, and to make sure we
could safely land there. Lunar Orbiter IV imaged the Moon during May of 1967. The tech-
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nology of the time was primitive compared to today, and the photographs were built up by
making small imaging scans/slices of the surface (the horizontal striping can be seen in the
images), then adding them all together to make a larger photograph. Image #3 is one of
these images of Mare Imbrium seen from almost overhead.

1. Approximately how many craters can you see inside the dark circular region that de-
fines Mare Imbrium? Compare the number of craters in Mare Imbrium to the brighter
regions to the North (above) of Mare Imbrium. (3 points)

Images #4 and #5 are close-ups of small sections of Mare Imbrium. In image #4,
the largest crater (in the lower left corner) is “Le Verrier” (named after the French
mathematician who predicted the correct position for the planet Neptune). Le Verrier
is 20 km in diameter. In image #5, the two largest craters are named Piazzi Smyth
(just left of center) and Kirch (below and left of Piazzi Smyth). Piazzi Smyth has a
diameter of 13 km, while Kirch has a diameter of 11 km.

2. Using the diameters for the large craters noted above, and a ruler, what is the approx-
imate diameters of the smallest craters you can clearly see in images #4 and #5? If
the NMSU campus is about 1 km in diameter, compare the smallest crater you can see
to the size of our campus. (3 points)

In image #5 there is an isolated mountain (Mons Piton) located near Piazzi Smyth.
It is likely that Mons Piton is related to the range of mountains to its upper right.

3. Estimate the coverage of the Organ Mountains that are located to the east of Las
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Cruces. Estimate a width and a length, and assuming a rectangle, what is the approx-
imate area of the Organs? (2 points)

4. Roughly how much area (in km2) does Mons Piton cover? Compare it to the Organ
Mountains. How do you think such an isolated mountain came to exist? [Hint: In the
introduction to the lab exercises, the process of maria formation was described. Using
this idea, how might Mons Piton become so isolated from the mountain range to the
northeast?] (2 points)

Station 2: Now let’s move to the “highlands”. In Image #6 (which is identical to
image #2), the crater Clavius can be seen on the bottom edge—it is the bottom-most
labeled feature on this map. Image #7 shows a close-up picture of Clavius (just
below center) taken from the ground through a small telescope (this is similar to what
you would see at the campus observatory). Clavius is one of the largest craters on the
Moon, with a diameter of 225 km. In the upper right hand corner is one of the best
known craters on the Moon, “Tycho.” In image #1 you can identify Tycho by the
large number of bright “rays” that emanate from this crater. Tycho is a very young
crater, and the ejecta blasted out of the lunar surface spread very far from the impact
site.

Images #8 and #9 are two high resolution images of Clavius and nearby regions
taken by Lunar Orbiter IV (note the slightly different orientations from the ground-
based picture).

5. Compare the region around Clavius to Mare Imbrium. Scientists now know that the
lunar highlands are older than the maria. What evidence do you have (using these
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photographs) that supports this idea? [Hint: review section 7.3 of the introduction.]
(5 points)

Station 3: Comparing Apollo landing sites. Images #10 and #11 are close-ups
of the Apollo 11 landing site in Mare Tranquillitatis (the “Sea of Tranquility”). The
actual spot where the “Eagle” landed on July 20, 1969, is marked by the small cross in
image 11 (note that three small craters near the landing site have been named for the
crew of this mission: Aldrin, Armstrong and Collins). [There are also quite a number
of photographic defects in these pictures, especially the white circular blobs near the
center of the image to the North of the landing site.] The landing sites of two other
NASA spacecraft, Ranger 8 and Surveyor 5, are also labeled in image #11. NASA
made sure that this was a safe place to explore! Recently, a new mission to map the
Moon with better resolution called the “Lunar Reconnaissance Orbiter” (LRO) sent
back images of the Apollo 11 landing site (image 11B). In this image LM is the base
of the lunar module, LRRR and PSEP are two science experiments. You can even see
the (faintly) disturbed soil where the astronauts walked!

Images #12 and #13 show the landing site of the last Apollo mission, #17. Apollo
17 landed on the Moon on December 11th, 1972. In image 13B is an LRO image of
the landing site. Note that during Apollo 17 they had a “rover” (identified with the
notation LRV) to drive around with. Compare the two landing sites.

6. Describe the logic that NASA used in choosing the two landing sites–why did they
choose the Tranquillitatis site for the first lunar landing? What do you think led them
to choose the Apollo 17 site? (5 points)
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The next two sets of images show photographs taken by the astronauts while on the
Moon. The first three photographs (#14, #15, and #16) are scenes from the Apollo
11 site, while the next three (#17, #18, and #19) were taken at the Apollo 17 land-
ing site.

7. Do the photographs from the actual landing sites back-up your answer to why NASA
chose these two sites? How? Explain your reasoning. (5 points)

Station 4: On the northern-most edge of Mare Imbrium sits the crater Plato (labeled
in images #2 and #6). Image #20 is a close-up of Plato.

8. Do you agree with the theory that the crater floor has been recently flooded? Is the
maria that forms the floor of this crater younger, older, or approximately the same
age as the nearby region of Mare Imbrium located just to the South (below) of Plato?
Explain your reasoning. (4 points)

Station 5: Images #21 and #22 are “topographical” maps of the Earth and of
the Moon. A topographical map shows the elevation of surface features. On the Earth
we set “sea level” as the zero point of elevation. Continents, like North America, are
above sea level. The ocean floors are below sea level. In the topographical map of the
Earth, you can make out the United States. The Eastern part of the US is lower than
the Western part. In topographical maps like these, different colors indicate different
heights. Blue and dark blue areas are below sea level, while green areas are just above
sea level. The highest mountains are colored in red (note that Greenland and Antarc-
tica are both colored in red–they have high elevations due to very thick ice sheets). We
can use the same technique to map elevations on the Moon. Obviously, the Moon does
not have oceans to define “sea level.” Thus, the definition of zero elevation is more ar-
bitrary. For the Moon, sea level is defined by the average elevation of the lunar surface.
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Image #22 is a topographical map for the Moon, showing the highlands (orange, red,
and pink areas), and the lowlands (green, blue, and purple). [Grey and black areas
have no data.] The scale is shown at the top. The lowest points on the Moon are 10
km below sea level, while the highest points are about 10 km above sea level. On the
left hand edge (the “y-axis”) is a scale showing the latitude. 0◦ latitude is the equator,
just like on the Earth. Like the Earth, the North pole of the Moon has a latitude
of +90◦, and the south pole is at −90◦. On the x-axis is the longitude of the Moon.
Longitude runs from 0◦ to 360◦. The point at 0◦ latitude and longitude of the Moon
is the point on the lunar surface that is closest to the Earth.

It is hard to recognize features on the topographical map of the Moon because of
the complex surface (when compared to the Earth’s large smooth areas). But let’s go
ahead and try to find the objects we have been studying. First, see if you can find
Plato. The latitude of Plato is +52◦ N, and its longitude is 351◦. You can clearly see
the outline of Plato if you look closely.

9. Is Plato located in a high region, or a low region? Is Plato lower than Mare Imbrium
(centered at 32◦N, 344◦)? [Remember that Plato is on the Northern edge of Mare
Imbrium.](4 points)

As described in the introduction, the Moon keeps the same face pointed towards Earth
at all times. We can only see the “far-side” of the Moon from a spacecraft. In image
#22, the hemisphere of the Moon that we can see runs from a longitude of 270◦, passing
through 0◦, and going all the way to 90◦ (remember, 0 is located at the center of the
Moon as seen from Earth). Image #23 is a more conventional topographical map of
the Moon, showing the two hemispheres: near side, and far side.

10. Compare the average elevation of the near-side of the Moon to that of the far-side.
Are they different? Explain. Can you make out the maria? Compare the number of
maria on the far side to the number on the near side. (4 points)
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[Why the far side of the Moon is so different from the near side remains a mystery!]

Station 6: With the surface of the Moon now familiar to you, and your percep-
tion of the surface of the Earth in mind, compare the Earth’s surface to the surface
of the Moon. Does the Earth’s surface have more craters or fewer craters than the
surface of the Moon? Discuss two differences between the Earth and the Moon that
could explain this. (5 points)

6.5 The Chemical Composition of the Moon: Keys to its Ori-
gin

Station 7: Now we want to examine the chemical composition of the Moon to reveal
its history and origin. The formation of planets (and other large bodies in the solar
system like the Moon) is a violent process. Planets grow through the process of ac-
cretion: the gravity of the young planet pulls on nearby material, and this material
crashes into the young planet, heating it, and creating large craters. In the earliest
days of the solar system, so much material was being accreted by the planets that they
were completely molten. That is, they were in the form of liquid rock, like the lava you
see flowing from some volcanoes on the Earth. Just as with water, denser objects in
molten rock sink to the bottom more quickly than less dense material. This is also true
for chemical elements. Iron is one of the heaviest of the common elements, and it sinks
toward the center of a planet more quickly than elements like silicon, aluminum, or
magnesium. Thus, near the Earth’s surface, rocks composed of these lighter elements
dominate. In lava, however, we are seeing molten rock from deeper in the Earth coming
to the surface, and thus lava and other volcanic (or “igneous”) rock can be rich in iron,
nickel, titanium, and other high-density elements.

Images #24 and 25 present two unique views of the Moon obtained by the space-
craft Clementine. Using special sensors, Clementine could make maps of the surface
composition of the Moon. Image #24 is a map of the amount of iron on the surface of
the Moon (“hotter” colors mean more iron than cooler colors). Image #25 is the same
type of map, but for titanium.
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11. Compare the distribution of iron and titanium to the surface features of the Moon
(using images #1, #2 or #6, or the topographical map in image #23). Where are the
highest concentrations of iron and titanium found? (5 points)

12. If the heavy elements like iron and titanium sank towards the center of the Moon soon
after it formed, what does the presence of large amounts of iron and titanium in the
maria suggest? [Hint: do you remember how maria are formed?] (5 points)

A cut-away diagram of the Earth is shown in the Figure 6.3. There are three main
structures: the crust (where we live), the mantle, and the core. The crust is cool and
brittle, the mantle is hotter and “plastic” (it flows), and the core is very hot and very
dense. As you may recall from the Density lab, the density of a material is simply its
mass (in grams or kilograms) divided by its volume (in cubic centimeters or meters).
Water has a density of 1 gm/cm3. The density of the Earth’s crust is about 3 gm/cm3,
while the mantle has a density of 4.5 gm/cm3. The core is very dense: 14 gm/cm3

(this is partly due to its composition, and partly due to the great pressure exerted by
the mass located above the core). The core of the Earth is almost pure iron, while the
mantle is a mixture of magnesium, silicon, iron and oxygen. The average density of
the Earth is 5.5 gm/cm3.

Before the astronauts brought back rocks from the Moon, we did not have a good
theory about its formation. All we knew was that the Moon had an average density
of 3.34 gm/cm3. If the Moon formed from the same material as the Earth, their
compositions would be nearly identical, as would their average densities. In Table 6.1,
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Figure 6.3: The internal structure of the Earth, showing the dimensions of the crust, mantle
and core, as well as their composition and temperatures.

we present a comparison of the compositions of the Moon and the Earth. The data
for the Moon comes from analysis of the rocks brought back by the Apollo astronauts.

Table 6.1: Composition of the Earth & Moon.
Element Earth Moon

Iron 34.6% 3.5%
Oxygen 29.5% 60.0%
Silicon 15.2% 16.5%

Magnesium 12.7% 3.5%
Titanium 0.05% 1.0%

13. Is the Moon composed of the same proportion of elements as the Earth? What are
the biggest differences? Does this support a model where the Moon formed out of the
same material as the Earth? (5 points)

As you will learn in lecture, the terrestrial planets in our solar system (Mercury, Venus,
Earth and Mars) have higher densities than the jovian planets (Jupiter, Saturn, Uranus
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and Neptune). One theory for the formation of the Moon is that it formed near Mars,
and “migrated” inwards to be captured by the Earth. This theory arose because the
density of Mars, 3.9 gm/cm3, is similar to that of the Moon. But Mars is rich in iron
and magnesium: 17% of Mars is iron, and more than 15% is magnesium.

14. Given this information, do you think it is likely that the Moon formed out near Mars?
Why? (5 points)

The currently accepted theory for the formation of the Moon is called the “Giant
Impact” theory. In this model, a large body (about the size of Mars) collided with
the Earth, and the resulting explosion sent a large amount of material into space.
This material eventually collapsed (coalesced) to form the Moon. Most of the ejected
material would have come from the crust and the mantle of the Earth, since it is the
material closest to the Earth’s surface. Table 6.2 shows the composition of the Earth’s
crust and mantle compared to that of the Moon.

Table 6.2: Chemical Composition of the Earth (crust and mantle) and Moon.
Element Earth’s Crust and Mantle Moon

Iron 5.0% 3.5%
Oxygen 46.6% 60.0%
Silicon 27.7% 16.5%

Magnesium 2.1% 3.5%
Calcium 3.6% 4.0%
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15. Given the data in Table 6.2, present an argument for why the giant impact theory
probably is now the favorite theory for the formation of the Moon. Can you think of
a reason why the compositions might not be exactly the same? (3 points)
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Name:
Date:

6.6 Take Home Exercise (35 points total)

Answer the following questions in the space provided:

1. What are the maria, and how were they formed? (5 points)

2. Explain how you would assign relative (“this is older than that”) ages to features on
the Moon or on any other surface in the solar system. (5 points)

3. How can the Earth be older than the Moon, as suggested by the Giant Impact Theory
of the Moon’s formation, but the Moon’s surface is older than the Earth’s surface?
What do we mean by ‘old’ in this context? (10 points)
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4. The maria are present on the Earthward-facing portion of the Moon and not on the
Moon’s far side. Since there is no reason to suspect that the impact history of the
near side of the Moon is substantially different from that experienced by the far side,
suggest another possible reason why the maria are present on the Earth-facing side
only, using the below figure as a guide. (15 points)
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6.7 Possible Quiz Questions

1. What is an impact crater?

2. What are the Maria?

3. What is the difference between the words Mare and Maria?

4. Explain what a synchronous orbit is.

5. What is a topographical map?

6.8 Extra Credit (ask your TA for permission before attempting,
5 points)

In the past few years, there have been some new ideas about the formation of the Moon, and
why the lunar farside is so different from the nearside (one such idea goes by the name “the
big splat”). In addition, we have recently discovered that the interior of the Moon is highly
fractured. Write a brief (about one page) review on the new computer simulations and/or
observations that are attempting to understand the formation and structure of the Moon.
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7 Estimating the Earth’s Density

7.1 Introduction

We know, based upon a variety of measurement methods, that the density of the Earth is
5.52 grams per cubic centimeter. [This value is equal to 5520 kilograms per cubic meter.
Your initial density estimate in Table 7.3 should be a value similar to this.] This density value
clearly indicates that Earth is composed of a combination of rocky materials and metallic
materials.

With this lab exercise, we will obtain some measurements, and use them to calculate our
own estimate of the Earth’s density. Our observations will be relatively easy to obtain, but
they will involve contacting someone in the Boulder, Colorado area (where the University of
Colorado is located) to assist with our observations. We will then do some calculations to
convert our measurements into a density estimate.

As we have discussed in class, and in previous labs this semester, we can calculate the
density of an object (say, for instance, a planet, or more specifically, the Earth) by knowing
that object’s mass and volume. It is a challenge, using equipment readily available to us,
to determine the Earth’s mass and its volume directly. [There is no mass balance large
enough upon which we can place the Earth, and if we could what would we have available to
“balance” the Earth?] But we have through the course of this semester discussed physical
processes which relate to mass. One such process is the gravitational attraction (force) one
object exerts upon another.

The magnitude of the gravitational force between two objects depends upon both the
masses of the two objects in question, as well as the distance separating the centers of the
two objects. Thus, we can use some measure of the Earth’s gravitational attraction for an
object upon its surface to ultimately determine the Earth’s mass. However, there is another
piece of information that we require, and that is the distance from the Earth’s surface to its
center: the Earth’s radius.

We will need to determine both the MASS of the Earth and the RADIUS of the Earth.
Since we will use the magnitude of Earth’s gravitational attraction to determine Earth’s
mass, and since this magnitude depends upon the Earth’s radius, well first determine Earth’s
circumference (which will lead us to the Earth’s radius and then to the Earth’s volume) and
then determine the Earth’s mass.
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7.2 Determining Earth’s Radius

Earlier this semester you read (or should have read!) in your textbook the description
of Eratosthenes’ method, implemented two-thousand plus years ago, to determine Earth’s
circumference. Since the Earth’s circumference is related to its radius as:

Circumference = 2 × π × RADIUS (with π = “pi” = 3.141592)

and the Earth’s volume is a function of its radius:

VOLUME = (4/3) × π × RADIUS3

We will implement Eratosthenes’ circumference measurement method and end up with an
estimate of the Earth’s radius.

Now, what measurements did Eratosthenes use to estimate Earth’s circumference? Er-
atosthenes, knowing that Earth is spherical in shape, realized that the length of an object’s
shadow would depend upon how far in latitude (north-or-south) the object was from being
directly beneath the Sun. He measured the length of a shadow cast by a vertical post in
Egypt at local noon on the day of the northern hemisphere summer solstice (June 20 or so).
He made a measurement at the point directly beneath the Sun (23.5 degrees North, at the
Egyptian city Syene), and at a second location further north (Alexandria, Egypt). The two
shadow lengths were not identical, and it is that difference in shadow length plus the knowl-
edge of how far apart the the two posts were from each other (a few hundred kilometers),
that permitted Eratosthenes to calculate his estimate of Earth’s circumference.

As we conduct this lab exercise we are not in Egypt, nor is today the seasonal date of the
northern hemisphere summer solstice (which occurs in June), nor is it locally Noon (since
our lab times do not overlap with Noon). But, nonetheless, we will forge ahead and estimate
the Earth’s circumference, and from this we will estimate the Earth’s radius.

TASKS:

• Take a post outside, into the sunlight, and measure the length of the post with the
tape measure.

• Place one end of the post on the ground, and hold the post as vertical as possible.

• Using the tape measure provided, measure to the nearest 1/2 centimeter the length of
the shadow cast by the post; this shadow length should be measured three times, by
three separate individuals; record these shadow lengths in Table 7.1.

• You will be provided with the length of a post and its shadow measured simultaneously
today in Boulder, Colorado.

1. Proceed through the calculations described after Table 7.1, and write your answers in
the appropriate locations in Table 7.1. (10 points)
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Table 7.1: Angle Data
Location Post Height Shadow Length Angle

(cm) (cm) (Degrees)
Las Cruces Shadow #1
Las Cruces Shadow #2
Las Cruces Shadow #3

Average Las Cruces Angle:
Boulder, Colorado

7.3 Angle Determination:

With a bit of trigonometry we can transform the height and shadow length you mea-
sured into an angle. As shown in Figure 7.1 there is a relationship between the length
(of your shadow in this situation) and the height (of the shadow-casting pole in this
situation), where:

TANGENT of the ANGLE = far-side length/ near-side length

Since you know the length of the post (the near-side length, which you have measured)
and the length of the shadow (the far-side length, which you have also measured, three
separate times), you can determine the shadow angle from your measurements, using
the ATAN, or TAN−1 capability on your calculator (these functions will give you an
angle if you provide the ratio of the height to length):

ANGLE = ATAN (shadow length / post length)

or

ANGLE = TAN−1(shadow length / post length)

Figure 7.1: The geometry of a vertical post sitting in sunlight.
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2. Calculate the shadow angle for each of your three shadow-length measure-
ments, and also for the Boulder, Colorado shadow-length measurement.
Write these angle values in the appropriate locations in Table 7.1. Then calculate the
average of the three Las Cruces shadow angles, and write the value on the “Average
Las Cruces Angle” line.

The angles you have determined are: 1) an estimate of the angle (latitude) difference
between Las Cruces and the latitude at which the Sun appears to be directly overhead
(which is currently ∼ 12 degrees south of the equator since we are experiencing early
northern autumn), and 2) the angle (latitude) difference between Boulder, Colorado
and the latitude at which the Sun appears to be directly overhead. The difference
(Boulder angle minus Las Cruces angle) between these two angles is the angular (lati-
tude) separation between Las Cruces and Boulder, Colorado.

We will now use this information and our knowledge of the actual distance (in kilome-
ters) between Las Cruces’ latitude and Boulder’s latitude. This distance is:

857 kilometers north-south distance between Las Cruces and Boulder, Colorado

In the same way that Eratosthenes used his measurements (just like those you have
made today), we can now determine an estimate of the Earth’s circumference.

3. Using your calculated Boulder Shadow Angle and your Average Las Cruces Shadow
Angle values, calculate the corresponding EARTH CIRCUMFERENCE value, and
write it below:

Average Earth Circumference (kilometers) =

857 kilometers × (360o)/(Boulder angle —Avg LC Angle) =

857 × [360o/( − )] = km (2 points)

The CIRCUMFERENCE value you have just calculated is related to the RADIUS
via the equation:

EARTH CIRCUMFERENCE = 2 × π × EARTH RADIUS

which can be converted to RADIUS using:

EARTH RADIUS = RE = EARTH CIRCUMFERENCE / (2 × π)
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4. For your calculated CIRCUMFERENCE, calculate that value of the Radius (in units
of kilometers) in the appropriate location below:

AVERAGE EARTH RADIUS VALUE = RE =
kilometers (3 points)

5. Convert this radius (RE) from kilometers to meters, and enter that value
in Table 7.3. (Note we will use the radius in meters the rest of this lab.)

You have now obtained one important piece of information (the radius of the Earth)
needed for determining the density of Earth. We will, in a bit, use this radius value to
calculate the Earth’s volume. Next, we will determine Earth’s mass, since we need to
know both the Earth’s volume and its mass in order to be able to calculate the Earth’s
density.

7.4 Determining the Earth’s Mass

The gravitational acceleration (increase of speed with increase of time) that a dropped
object experiences here at the Earth’s surface has a magnitude defined by the Equation
(thanks to Sir Isaac Newton for working out this relationship!) shown below:

Acceleration (meters per second per second) = G × ME/RE
2

Where ME is the mass of the Earth in kilograms, RE is the radius of the Earth in units
of meters, and the Gravitational Constant, G = 6.67 x 10−11 meters3/(kg-seconds2).
You have obtained several estimates, and calculated an average value of RE, above.
However, you currently have no estimate for ME. You can estimate the Earth’s mass
from the measured acceleration of an object dropped here at the surface of Earth; you
will now conduct such an exercise.

A falling object, as shown in Figure 7.2, increases its downward speed at the constant
rate “X” (in units of meters per second per second). Thus, as you hold an object in
your hand, its downward speed is zero meters per second. One second after you release
the object, its downward speed has increased to X meters per second. After two sec-
onds of falling, the dropped object has a speed of 2X meter per second, after 3 seconds
its downward speed is 3X meters per second, and so on. So, if we could measure the
speed of a falling object at some point in time after it is dropped, we could determine
the object’s acceleration rate, and from this determine the Earth’s mass (since we know
the Earth’s radius). However, it is difficult to measure the instantaneous speed of a
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Figure 7.2: The distance a dropped object will fall during a time interval t is proportional
to t2. A dropped object speeds up as it falls, so it travels faster and faster and falls a greater
distance as t increases.

dropped object.

We can, however, make a different measurement from which we can derive the dropped
object’s acceleration, which will then permit us to calculate the Earth’s mass. As was
pointed out above, before being dropped the object’s downward speed is zero meters per
second. One second after being dropped, the object’s downward speed is X meters per
second. During this one-second interval, what was the object’s AVERAGE downward
speed? Well, if it was zero to begin with, and X meters per second after falling for one
second, its average fall speed during the one-second interval is:

Average Fall speed during first second = (Zero + X) / 2 = X/2 meters
per second, which is just the average of the initial (zero) and final (X) speeds.

At an average speed of X/2 meters per second during the first second, the distance
traveled during that one second will be:

(X/2) (meters per second) × 1 second = (X/2) meters,

since:

DISTANCE = AVERAGE SPEED × TIME = 1/2 × ACCELERATION x

TIME2

92



So, if we measure the length of time required for a dropped object to fall a certain
distance, we can calculate the object’s acceleration.

Tasks:

• Using a stopwatch, measure the amount of time required for a dropped object
(from the top of the Astronomy Building) to fall 9.0 meters (28.66 feet). Different
members of your group should take turns making the fall-time measurements;
write these fall time values for two “drops” in the appropriate location in Table
7.2. (10 points for a completed table)

• Use the equation: Acceleration = [2.0 x Fall Distance] / [(Time to
fall)2]

and your measured Time to Fall values and the measured distance (9.0 meters)
of Fall to determine the gravitational acceleration due to the Earth; write these
acceleration values (in units of meters per second per second) in the proper loca-
tions in Table 7.2.

• Now, knowing the magnitude of the average acceleration that Earth’s gravity
imposes upon a dropped object, we will now use the “Gravity” equation to get
ME:

Gravitational acceleration = G × ME/RE
2 (where RE must be in meters!)

Table 7.2: Time of Fall Data
Time to Fall Fall Distance Acceleration

Object Drop #1 9 meters
Object Drop #2 9 meters

Average =

6. By rearranging the Gravity equation to solve for ME, we can now make an estimate of
the Earth’s mass:
ME = Average Acceleration × (RE)2 / G = (5

points)

Write the value of ME (in kilograms) in Table 7.3 below.

7.5 Determining the Earth’s Density

Now that we have estimates for the mass (ME) and radius (RE) of the Earth, we can
easily calculate the density: Density = Mass/Volume. You will do this below.
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Tasks:

• Calculate the volume (VE) of the Earth given your determination of its radius in
meters!:

VE = (4/3) × π × RE
3

and write this value in the appropriate location in Table 7.3 below.

• Divide your value of ME (that you entered in Table 7.3) by your estimate of VE

that you just calculated (also written in Table 7.3): the result will be your estimate
of the Average Earth Density in units of kilograms per cubic meter. Write this
value in the appropriate location in Table 7.3.

• Divide your AVERAGE ESTIMATE OF EARTH’S DENSITY value that you just
calculated by the number 1000.0; the result will be your estimated Earth density
value in units of grams per cubic centimeter (the unit in which most densities are
tabulated). Write this value in the appropriate location in Table 7.3.

Table 7.3: Data for the Earth

Estimate of Earth’s Radius: m (4 points)

Estimate of Earth’s Mass: kg (4 points)

Estimate of Earth’s Volume: m3 (4 points)

Estimate of Earth’s Density: kg/m3 (4 points)

Converted Density of the Earth: gm/cm3 (4 points)
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7.6 In-Lab Questions:

1. Is your calculated value of the (Converted) Earth’s density GREATER THAN, or
LESS THAN, or EQUAL TO the actual value (see the Introduction) of the Earth’s
density? If your calculated density value is not identical to the known Earth density
value, calculate the “percent error” of your calculated density value compared to the
actual density value (2 points):

PERCENT ERROR =

100%× (CALCULATED DENSITY− ACTUAL DENSITY)

ACTUAL DENSITY
=

2. You used the AVERAGE Las Cruces shadow angle in calculating your estimate of the Earth’s
density (which you wrote down in Table 7.3). If you had used the LARGEST of the three
measured Las Cruces shadow angles shown in Table 7.1, would the Earth density value that
you would calculate with the LARGEST Las Cruces shadow angle be larger than or smaller
than the Earth density value you wrote in Table 7.3? Think before writing your answer!
Explain your answer. (5 points)

3. If the Las Cruces to Boulder, Colorado distance was actually 200 km in length, but your
measured fall times did not change from what you measured, would you have calculated a
larger or smaller Earth density value? Explain the reasoning for your answer. (3 points)
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4. If we had conducted this experiment on the Moon rather than here on the Earth, would
your measured values (fall time, angles and angle difference between two locations separated
north-south by 857 kilometers) be the same as here on Earth, or different? Clearly explain
your reasoning. [It might help if you draw a circle representing Earth and then draw a circle
with 1/4th of the radius of the Earth’s circle to represent the Moon.] (5 points)
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7.7 Take Home Exercise (35 points total)

1. Type a 1.5-2 page Lab Report in which you will address the following topics:

a) The estimated density value you arrived at was likely different from the actual Earth
density value of 5.52 grams per cubic centimeter; describe 2 or 3 potential errors in your
measurements that could possibly play a role in generating your incorrect estimated
density value.

b) Describe 2-3 ways in which you could improve the measurement techniques used
in lab; keep in mind that NMSU is a state-supported school and thus we do not have
infinite resources to purchase expensive sophisticated equipment, so your suggestions
should not be too expensive.

c) Describe what you have learned from this lab, what aspects of the lab surprised you,
what aspects of the lab worked just as you thought they would, etc.

7.8 Possible Quiz Questions

1. What is meant by the “radius” of a circle? (Drawing ok)

2. What does the term “circumference of a circle” mean?

3. How do you calculate the circumference of a circle if given the radius?

4. What is “pi” (or π)? What is the value of pi?

5. What is the volume of a sphere?

6. What does the term “density” mean?

7.9 Extra Credit (ask your TA for permission before attempting,
5 points)

Astronomers use density to segregate the planets into categories, such as “Terrestrial” and
“Jovian”. Using your book, or another reference, look up the density of the Sun and Jupiter
(or, if you have completed the previous lab, use the data table you constructed for Take-
Home portion of that lab). Compare the densities of the Sun and Jupiter. Do you think
they are composed of same elements? Why/why not? What are the two main elements in
the periodic table that dominate the composition of the Sun? If the material that formed
the Sun (and the Sun has 99.8% of the mass of the solar system) was the original “stuff”
from which all of the planets were formed, how did planets like Earth end up with such
high densities? What do you think might have happened in the distant past to the lighter
elements? (Hint: think of a helium balloon, or a glass of water thrown out onto a Las Cruces
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parking lot in the summer!).
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8 The History of Water on Mars

Scientists believe that for life to exist on a planet (or moon), there must be liquid water
available. Thus, one of the priorities for NASA has been the search for water on other objects
in our solar system. Currently, these studies are focused on three objects: Mars, Europa (a
moon of Jupiter), and Enceladus (a moon of Saturn). It is believed that both Europa and
Enceladus have liquid water below their surfaces. Unfortunately, it will be very difficult to
find out if their subsurface oceans harbor lifeforms, as they are below very thick sheets of
ice. Mars is different. Mars was discovered to have polar ice caps more than 350 years ago.
While much of the surface ice of these polar caps is “dry ice”, frozen carbon dioxide, we
believe there is a large quantity of frozen water in the polar regions of Mars.

Mars has many similarities to Earth. The rotation period of Mars is 24 hours and 37
minutes. Martian days are just a little longer than Earth days. Mars also has seasons that
are similar to those of the Earth. Currently, the spin axis of Mars is tilted by 25◦ to its
orbital plane (Earth’s axis is tilted by 23.5◦). Thus, there are times during the Martian year
when the Sun never rises in the northernmost and southernmost parts of the planet (winter
above the “arctic circles”). And times of the year in these same places where the Sun never
sets (northern or southern summer). Mars is also very different from the Earth: its radius
is about 50% that of Earth, the average surface temperature is very cold, −63 ◦C (= −81
◦F), and the atmospheric pressure at the surface is only 1% that of the Earth. The low
temperatures and pressures mean that it is hard for liquid water to currently exist on the
surface of Mars. Was this always true? We will find that out today.

In this lab you will be examining a notebook of images of Mars made by recent space
probes and looking for signs of water. You will also be making measurements of some valleys
and channels on Mars to enable you to distinguish the different surface features left by
small, slow flowing streams and large, rapid outflows. You will calculate the volumes of
water required to carve these features, and consider how this volume compares with other
bodies of water.

8.1 Water Flow Features on Mars

The first evidence that there was once water on Mars was revealed by the NASA spacecraft
Mariner 9. Mariner 9 reached Mars in 1971, and after waiting-out a global dust storm that
obscured the surface of Mars, started sending back images in December of that year. Since
that time a flotilla of spacecraft have been investigating Mars, supplying insight into the
history of water there.
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Figure 8.1: A dendritic drainage pattern in Yemen (left), and an anastomosing drainage in
Alaska (right).

8.1.1 Warrego Valles

The first place we are going to visit is called “Warrego Valles”, where the “Valles” part of
its name indicates valleys (or canyons). The singular of Valles is Vallis. The location of
Warrego is indicated by the red dot on the map of Mars that is the first image (“Image #1”)
in the three ring binder.

The following set of questions refer to the images of Warrego Valles. Image #2 is a wide
view of the region, while Image #3 is a close-up.

1. By looking at the morphology, or shape, of the valley, geologists can tell how the valley
was formed. Does this valley system have a dendritic pattern (like the veins in a leaf)
or an anastomosing pattern (like an intertwined rope)? See Figure 8.1. (1 point)

2. Overlay a transparency film onto the close-up image. Trace the valley pattern onto
the transparency. How does a valley like this form? Do you think it formed slowly
over time, or quickly from a localized water source? Why? (3 points)
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3. Now, on the wide-field view, trace the boundary between the uplands and plains on
your close-up overlay (the transparency sheet) and label the Uplands and the Plains.
Is Warrego located in the uplands or on the plains? (2 points)

4. Which terrain is older? Recall that we can use crater counting to help determine the
age of a surface, so let’s do some crater counting. Overlay the transparency sheet on
the wide-view image. Pick out two square regions on the wide view image (#2), each
5 cm × 5 cm. One region should cover the smooth plains (“Icaria Planum”) and the
other should cover the upland region. Draw these two squares on the transparency
sheet. Count all the impact craters greater than 1 millimeter in diameter within each
of the two squares you have outlined. Write these numbers below, with identifications.
Which region is older? What does this exercise tell you about when approximately (or
relatively) Warrego formed? (5 points)

5. To figure out how much water was required to form this valley, we first need to estimate
its volume. The volume of a rectangular solid (like a shoebox) is equal to ` × w × h,
where ` is the length of the box, h is the height of the box, and w is the width. We
will approximate the shape of the valley as one long shoebox and focus only on the
main valley system. Use the close-up image for this purpose.

First, we need to add up the total length of all the branches of the valley. Note that
in the close-up image there are two well-defined valley systems. A more compact one
near the right edge, and the bigger one to the left of that. Let’s concentrate on the
bigger one that is closer to the middle of the image. Measure the length, in millime-
ters, of each branch and the main trunk. Be careful not to count the same length
twice. Sometimes it is hard to tell where each branch ends. You need to use your own
judgment and be consistent in the way you measure each branch. Now add up all your
measurements and convert the sum to kilometers. In this image 1 mm = 0.5 km. What
is the total length ` of the valley system in kilometers? Show your work. (3 points)
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6. Second, we need to find the average width of the valley. Carefully measure the width
of the valley (in millimeters) in several places. What is the average width? Convert
this to kilometers. Show your work. (2 points)

7. Finally, we need to know the depth. It is hard to measure depths from photographs,
so we will make an estimate. From other evidence that we will not discuss here, the
depth of typical Martian valleys is about 200 meters. Convert this to kilometers. (1
point)

8. Now find the total valley volume in km3, using the relation V = `×w× h. This is the
amount of sediment and rocks that was removed by water erosion to form this valley.
We do not know for sure how much water was required to remove each cubic kilometer,
but we can guess. Let’s assume that 100 km3 of water was required to erode 1 km3 of
Mars. How much water was required to form Warrego Valles? Show your work. (5
points)

Image #4 is a recent image of one small “tributary” of the large valley network you have
just measured (it is the leftmost branch that drains into the big valley system you explored).
In this image the scientists have made identifications of a number of features that are much
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too small to see in image #3. Note that these researchers traced the valley network for this
tributary and note where dust has filled-in some of the valley, or where “faults”, cracks in the
crust of the planet (orange line segments), have occurred. In addition, in the drawing on the
right the dashed circles locate very old craters that have been eroded away. Using all of this
information, you can begin to make good estimates of the age, and the sequences of events.
Near the bottom they note a “crater with lobate ejecta that postdates valleys.” This crater,
which is about 2 km in diameter, was created by a meteorite impact that occurred after the
valley formed. By doing this all along all of the tributaries of the Warrego Valles the age of
this feature can be estimated. Ansan & Mangold (2005) conclude that the Warrego valley
network began forming 3.5 billion years ago, from a period of rain and snow that may have
lasted for 500 million years.

Clean-off transparency for the next section!

8.1.2 Ares and Tiu Valles

We now move to a morphologically different site, the Ares and Tiu Valles. These valleys are
found near the equator of Mars, in the “Margaritifer Terra”. This region can be found in
the upper right quadrant of image #5 and is outlined in red. Note that the famous “Valles
Marineris”, the “grand canyon” of Mars (which dwarfs our Grand Canyon), is connected to
the Margaritifer Terra by a broad, complicated canyon. In the close up, image #6, the two
valles are identified (ignore the numbered white boxes, as they are part of a scientific study
of this region). In this false-color image, elevation is indicated where the highest features
are in white and brown, and the lowest features are pale green.

The next set of questions refer to Ares and Tiu Valles. On the wide scale image, the spot
where the Mars Pathfinder spacecraft landed is indicated. Can you guess why that particular
spot was chosen?

9. First, which way did the water flow that carved the Ares and Tiu Valles? Did water
flow south-to-north, or north-to-south? How did you decide this? [Note that the
latitude is indicated on the right hand side of image #6.] (2 points)

10. In our first close-up image (#7), there are two “teardrop islands”. These two features
can be found close to the “l” in the Pathfinder landing site label in image #6. There
are other features with the same shape elsewhere in the channel. In image #8, we
provide a wide field view of the “flood plains” of Tiu and Ares centered on the two
teardrop islands of image #7. Lay the transparency on this image and make a sketch of
the pattern of these channels. Now add arrows to show the path and direction
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the flowing water took. Look at the pattern of these channels. Are they dendritic
or anastomosing? (3 points)

11. Now we want to get an idea of the volume of water required to form Ares Valles.
Measure the length of the channel from the top end of the biggest “island” above the
Pathfinder landing site (note there are two islands here, a smaller one with a deep
crater, and a bigger one with a shallow crater. We want you to measure the channel
that goes by this smaller island on the right side and to the left of the big island, and
the channel that goes around the bigger island on the right to where they both join-up
again at the top of this big island) to the bottom right corner of the image. In this
image, 1 mm = 10 km. What is the total length of these channels? Show your work
(3 points)

12. Measure the channel width in several places and find the average width. On average,
how wide is the channel in km? Show your work (2 points)

13. The average depth is about 200 m. How much is that in km? (1 point)

14. Now multiply your answers (in units of km) to find the volume of the channel in
km3. Use the same ratio of water volume to channel volume that we used in Question
3 to find the volume of water required to form the channel. Lake Michigan holds 5,000
km3 of water, how does it compare to what you just calculated? Show your work. (4
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points)

15. Obviously, the Ares and Tiu Valles formed in a different fashion than Warrego. We
now want to examine the feature named “Hydaspis Chaos” in image #6. This feature
“drains into” the Tiu Vallis. In image #9, we present a wide view image of this feature.
In image #10, we show a close up of a small part of Hydaspis. Why do you think such
features were given the name “Chaos” regions? (2 points)

16. Scientists believe that Chaos regions are formed by the sudden release of large amounts
of groundwater (or, perhaps, the sudden melting of ice underneath the surface), causing
massive, and rapid flooding. Does such an idea make sense to you? Why? What
evidence for this hypothesis is present in these images to support this idea? (4 points)

17. In image #11 is a picture taken at the time of the disembarkation of the little Pathfinder
rover (named “Sojourner”) as it drove down the ramp from its lander. Is the surround-
ing terrain consistent with its location in the flood plain of Ares Vallis? Why/why not?
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(3 points)

18. Recent research into the age of the Ares and Tiu Valles suggest that, while they began
to form around 3.6 billion years ago (like Warrego), water still flowed in these channels
as recently as 2.5 billion years ago. Thus, the flood plains of Ares and Tiu are much
younger than Warrego. Do you agree with this assessment? How did you arrive at this
conclusion? (4 points)

19. You have now studied Warrego and Ares Valles up close. Compare and contrast the
two different varieties of fluvial (water-carved) landforms in as many ways
as you can think of (at least three!). Do you think they formed the same way?
How does the volume of water required to form Ares Valles compare to the volume of
water required to form Warrego Valles? (5 points)
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8.2 The Global Perspective

In image #12 is a topographic map of Mars that is color-coded to show the altitude of the
surface features where blue is low, and white is very high. Note that the northern half of
Mars is lower than the southern half, and the North pole is several km lower than the South
pole. The Ares and Tiu Valles eventually drain into the region labeled “Chryse Planitia”
(longitude 330◦, latitude 25◦).

20. If there was an abundance of water on Mars, what would the planet look like? How
might we prove if this was feasible? For example, scientists estimate the age of the
northern plains as being formed between 3.6 and 2.5 billion years ago. How does this
number compare with the ages of the Ares and Tiu Valles? Could they be one source
of water for this ocean? (5 points)

One way to test the hypothesis that the northern region of Mars was once covered by an
ocean is to look for similarities to Earth. Over the history of Earth, oceans have covered
large parts of the current land masses/continents (as one once covered much of New Mexico).
Thus, there could be ancient shoreline features from past Earth oceans that we can compare
to the proposed “shoreline” areas of Mars. In image #13 is a comparison of the Ebro river
basin (in Spain) to various regions found on Mars that border the northern plains. The Ebro
river basin shown in the upper left panel was once below sea level, and a river drained into
an ancient ocean. The sediment laid down by the river eventually became sedimentary rock,
and once the area was uplifted, the softer material eroded away, leaving ridges of rock that
trace the ancient river bed. The other three panels show similar features on Mars.

If the northern part of Mars was covered by an ocean, where did the water go? It might
have evaporated away into space, or it could still be present frozen below the surface. In
2006, NASA sent a spacecraft named Phoenix that landed above the “arctic circle” of Mars
(at a latitude of 68◦ North). This lander had a shovel to dig below the surface as well as
a laboratory to analyze the material that the shovel dug up. Image #14 shows a trench
that Phoenix dug, showing sub-surface ice and how chunks of ice (in the trench shadow)
evaporated (technically “sublimated”, ice changing directly into gas) over time. The slow
sublimation meant this was water ice, not carbon dioxide ice. This was confirmed when
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water was detected in the samples delivered to the onboard laboratory.

21. Given all of this evidence presented in the lab today, Mars certainly once had abundant
surface water. We still do not know how much there was, how long it was present on the
surface, or where it all went. But explain why discovery of large amounts of subsurface
water ice might be important for astronauts that could one day visit Mars (5 points)
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8.3 Take Home Exercise (35 points total)

Answer the following questions on a separate sheet of paper, and turn it in with the rest of
your lab.

1. What happened to all of the water that carved these valley systems? We do not see
any water on the surface of Mars when we look at present-day images of the planet,
but if our interpretation of these features is correct, and your calculated water volumes
are correct (which they probably are), then where has all of the water gone? Discuss
two possible (probable?) fates that the water might have experienced. Think about
discussions we have had in class about the atmospheres of the various planets and
what their fates have been. Also think about how Earth compares to Mars and how
the water abundances on the two planets now differ. (20 points)

2. Scientists believe that life (the first, primitive, single cell creatures) on Earth began
about 1 billion years after its formation, or 3.5 billion years ago. Scientists also believe
that liquid water is essential for life to exist. Looking at the ages and lifetimes of the
Warrego, Ares and Tiu Valles, what do you think about the possibility that life started
on the planet Mars at the same time as Earth? What must have Mars been like at
that time? What would have happened to this life? (15 points)

8.4 Possible Quiz Questions

1. Is water an important erosion process on Mars?

2. What does “dendritic” mean?

3. What does “anastomosing” mean?
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8.5 Extra Credit (ask your TA for permission before attempting,
5 points)

In this lab you have found that dendritic and anastomosing “river” patterns are found on
Mars, suggesting there was free flowing water at some time in Mars’ history. Use web-based
resources to investigate our current ideas about the history of water on Mars. Then find
images of both dendritic and anastomosing features on the Earth (include them in your
report). Describe where on our planet those particular patterns were found, and what type
of climate exists in that part of the world. What does this suggest about the formation of
similar features on Mars?
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9 Measuring Distances Using Parallax

9.1 Introduction

How do astronomers know how far away a star or galaxy is? Determining the distances
to the objects they study is one of the the most difficult tasks facing astronomers. Since
astronomers cannot simply take out a ruler and measure the distance to any object, they
have to use other methods. Inside the solar system, astronomers can simply bounce a radar
signal off of a planet, asteroid or comet to directly measure the distance to that object (since
radar is an electromagnetic wave, it travels at the speed of light, so you know how fast the
signal travels–you just have to count how long it takes to return and you can measure the
object’s distance). But, as you will find out in your lecture sessions, some stars are hun-
dreds, thousands or even tens of thousands of “light years” away. A light year is how far
light travels in a single year (about 9.5 trillion kilometers). To bounce a radar signal of a
star that is 100 light years away would require you to wait 200 years to get a signal back
(remember the signal has to go out, bounce off the target, and come back). Obviously, radar
is not a feasible method for determining how far away stars are.

In fact, there is one, and only one direct method to measure the distance to a star:
“parallax”. Parallax is the angle that something appears to move when the observer looking
at that object changes their position. By observing the size of this angle and knowing how
far the observer has moved, one can determine the distance to the object. Today you will
experiment with parallax, and appreciate the small angles that astronomers must measure
to determine the distances to stars.

To introduce you to parallax, perform the following simple experiment:

Hold your thumb out in front of you at arm’s length and look at it with your left eye
closed. Now look at it with your right eye closed. As you look at your thumb, alternate
which eye you close several times. You should see your thumb move relative to things in the
background. Your thumb is not moving but your point of view is moving, so your thumb
appears to move.

• Goals: to discuss the theory and practice of using parallax to find the distances to
nearby stars, and use it to measure the distance to objects in the classroom

• Materials: classroom “ruler”, worksheets, ruler, protractor, calculator, small object
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9.2 Parallax in the classroom

The “classroom parallax ruler” will be installed/projected on one side of the classroom. For
the first part of this lab you will be measuring motions against this ruler.

Now work in groups: stand at the back of the room and have the TA place the parallax
device on one of tape marks along the line that goes straight to the front wall. You should
be able to see the plastic stirrer against the background ruler. The observer should blink
his/her eyes and measure the number of lines on the background ruler against which the
object appears to move. Note that you can estimate the motion measurement to a
fraction of tick mark, e.g., your measurement might be 2 1/2 tick marks). Do
this for the three different marked distances. Switch places and do it again. Each person
should estimate the motion for each of the three distances.

1. How many tick marks did the object move at the closest distance? (2 points):

2. How many tick marks did the object move at the middle distance? (2 points):

3. How many tick marks did the object move at the farthest distance? (2 points):

4. ’Parallax’ is the term used for the apparent motion of the object against the background
ruler. It is caused by looking at an object from two different vantage points. In this
case, the two vantage points are the locations of your two eyes. Qualitatively, what do
you see? As the object gets farther away, is the apparent motion smaller or larger? (1
point):

5. What if the vantage points are further apart? For example, imagine you had a huge
head and your eyes were a foot apart rather than several inches apart. What would
you predict for the apparent motion? (1 point):

Try the experiment again, this time using the object at one of the distances used above,
but now measuring the apparent motion by using just one eye, but moving your whole
head a few feet from side to side to get more widely separated vantage points.

6. How many tick marks does the object move as seen from the more widely separated
vantage points? (1 point):

7. For an object at a fixed distance, how does the apparent motion change as you observe
from more widely separated vantage points? (1 point):
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9.3 Measuring distances using parallax

We have seen that the apparent motion depends on both the distance to an object and also
on the separation of the two vantage points. We can then turn this around: if we can mea-
sure the apparent motion and also the separation of the two vantage points, we should be
able to infer the distance to an object. This is very handy: it provides a way of measuring
a distance without actually having to go to an object. Since we can’t travel to them, this
provides the only direct measurement of the distances to stars.

We will now see how parallax can be used to determine the distances to the objects
you looked at just based on your measurements of their apparent motions and a measure-
ment of the separation of your two vantage points (your two eyes).

9.3.1 Angular motion of an object

How can we measure the apparent motion of an object? As with our background ruler,
we can measure the motion as it appears against a background object. But what are the
appropriate units to use for such a measurement? Although we can measure how far apart
the lines are on our background ruler, the apparent motion is not really properly measured
in a unit of length; if we had put our parallax ruler further away, the apparent motion would
have been the same, but the number of tick marks it moved would have been larger.

The apparent motion is really an angular motion. As such, it can be measured in degrees,
with 360 degrees in a circle.

Figure out the angular separation of the tick marks on the ruler as seen from the opposite
side of the classroom. Do this by putting one eye at the origin of one of the tripod-mounted
protractors and measuring the angle from one end of the background ruler to the other end
of the ruler. You might lay a pencil from your eye at the origin of the protractor toward
each end and use this to measure the the total angle. Divide this angle by the total number
of tick marks to figure out the angle for each tick mark.

1. Number of degrees for the entire background ruler (between the 0 and 20 marks):

2. Number of tick marks between 0 and 20 on the ruler:

3. Number of degrees in each tick mark:

Convert your measurements of apparent motion in tick marks from Section 9.2 to an-
gular measurements by multiplying the number of tick marks by the number of degrees
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per tick mark:

4. How many degrees did the object appear to move at the closest distance? (2 points):

5. How many degrees did the object appear to move at the middle distance? (2 points):

6. How many degrees did the object appear to move at the farthest distance? (2 points):

9.3.2 Distance between the vantage points

Now you need to measure the distance between the two different vantage points, in this case,
the distance between your two eyes. Have your partner measure this with a ruler. Since you
see out of the pupil part of your eyes, you want to measure the distance between the centers
of your two pupils.

1. What is the distance between your eyes? (2 points)

9.3.3 Using parallax measurements to determine the distance to an object

To determine the distance to an object for which you have a parallax measurement, you can
construct an imaginary triangle between the two different vantage points and the object, as
shown in Figure 9.1.

The angles you have measured correspond to the angle α on the diagram, and the dis-
tance between the vantage points (your pupils) corresponds to the distance b on the diagram.
The distance to the object, which is what you want to figure out, is d.

The three quantities b, d, and α are related by a trigonometric function called the tangent.
Now, you may have never heard of a tangent, if so don’t worry–we will show you how to do
this using another easy (but less accurate) way! But for those of you who are familiar with
a little basic trigonometry, here is how you find the distance to an object using parallax: If
you split your triangle in half (dotted line), then the tangent of (α/2) is equal to the quantity
(b/2)/d:

tan
(α

2

)
=

(b/2)

d
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Figure 9.1: Parallax triangle

Rearranging the equation gives:

d =
(b/2)

tan (α/2)

You can determine the tangent of an angle using your calculator by entering the angle
and then hitting the button marked tan. There are several other units for measuring angles
besides degrees (for example, radians), so you have to make sure that your calculator
is set up to use degrees for angles before you use the tangent function.

Combine your measurements of angular distances and the distance between the vantage
points to determine the three different distances to the parallax device. The units of the
distances which you determine will be the same as the units you used to measure the distance
between your eyes; if you measured that in inches, then the derived distances will be in inches.

Distance when object was at closest distance: (2 points)

Distance when object was at middle distance: (2 points)

Distance when object was at farthest distance: (2 points)

Now go and measure the actual distances to the locations of the objects using a yardstick,
meterstick, or tape measure. How well did the parallax distances work? Can you think of
any reasons why your measurements might not match up exactly? (5 points)
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9.4 Using Parallax to measure distances on Earth, and within the
Solar System

We just demonstrated how parallax works in the classroom, now lets move to a larger scale
then the classroom.

9.4.1 The “Non-Tangent” way to figure out distances from angles

Because the angles in astronomical parallax measurement are very small, astronomers do
not have to use the tangent function to determine distances from angles–they use something
called the “small angle approximation formula”:

θ

57.3
=

(b/2)

d

In this equation, we have defined θ = α/2, where α is the same angle as in the earlier
equations (and in Fig. 9.1). Rearranging the equation gives:

d =
57.3× (b/2)

θ

To use this equation your parallax angle “θ” has to be in degrees. Now you can pro-
ceed to the next step!

1. Using the small angle formula, and your measured pupil distance, what would be the
parallax angle (in degrees) for Organ Summit, the highest peak in the Organ moun-
tains, if the Organ Summit is located 12 miles (or 20 km) from this classroom? [Hint:
there are 5280 feet in a mile, and 12 inches in a foot. There are 1,000 meters in a km.]:
(3 points)

You should have gotten a tiny angle! The smallest angle that the best human eyes can
resolve is about 0.02 degrees. Obviously, our eyes provide an inadequate baseline for
measuring this large of a distance. How can we get a bigger baseline? Well surveyors
use a “transit” to carefully measure angles to a distant object. A transit is basically
a small telescope mounted on a (fancy!) protractor. By locating the transit at two
different spots separated by 100 yards (and carefully measuring this baseline!), they
can get a much larger parallax angle, and thus it is fairly easy to measure the distances
to faraway trees, mountains, buildings or other large objects.
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How about an object in the Solar System? We will use Mars, the planet that comes clos-
est to Earth. At favorable oppositions, Mars gets to within about 0.4 AU of the Earth.
Remember, 1 AU is the average distance between the Earth and Sun: 149,600,000 km.

2. Calculate the parallax angle for Mars (using the small angle approximation) using a
baseline of 1000 km. (3 points)

9.5 Distances to stars using parallax, and the “Parsec”

Because stars are very far away, the parallax motion will be very small. For example, the
nearest star is about 1.9 × 1013 miles or 1.2 × 1018 inches away! At such a tremendous
distance, the apparent angular motion is very small. Considering the two vantage points of
your two eyes, the angular motion of the nearest star corresponds to the apparent diameter
of a human hair seen at the distance of the Sun! This is a truly tiny angle and totally
unmeasurable by your eye.

Like a surveyor, we can improve our situation by using two more widely separated van-
tage points. The two points farthest apart we can use from Earth is to use two opposite
points in the Earth’s orbit about the Sun. In other words, we need to observe a star at two
different times separated by six months. The distance between our two vantage points, b, will
then be twice the distance between the Earth and the Sun: “2 AU”. Figure 9.2 shows the idea.

Figure 9.2: Parallax Method for Distance to a Star

Using 299.2 million km as the distance b, we find that the apparent angular motion (α)
of even the nearest star is only about 0.0004 degrees. This is also unobservable using your
naked eye, which is why we cannot directly observe parallax by looking at stars with our
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naked eye. However, this angle is relatively easy to measure using modern telescopes and
instruments.

Time to talk about a new distance unit, the “Parsec”. Before we do so, we have to review
the idea of smaller angles than degrees. Your TA or professor might already have mentioned
that a degree can be broken into 60 arcminutes. Thus, instead of saying the parallax angle is
0.02 degrees, we can say it is 1.2 arcminutes. But note that the nearest star only has a paral-
lax angle of 0.024 arcminutes. We need to switch to a smaller unit to keep from having to use
scientific notation: the arcsecond. There are 60 arcseconds in an arcminute, thus the parallax
angle (α) for the nearest star is 1.44 arcseconds. To denote arcseconds astronomers append
a single quotation mark (”) at the end of the parallax angle, thus α = 1.44” for the nearest
star. But remember, in converting an angle into a distance (using the tangent or small angle
approximation) we used the angle α/2. So when astronomers talk about the parallax of a
star they use this angle, α/2, which we called “θ” in the small angle approximation equation.

How far away is a star that has a parallax angle of θ = 1”? The answer is 3.26 light
years, and this distance is defined to be “1 Parsec”. The word Parsec comes from Parallax
Second. An object at 1 Parsec has a parallax of 1”. An object at 10 Parsecs has a parallax
angle of 0.1”. Remember, the further away an object is, the smaller the parallax angle.

The nearest star (Alpha Centauri) has a parallax of θ = 0.78”, and is thus at a distance
of 1/θ = 1/0.78 = 1.3 Parsecs.

Depending on your professor, you might hear the words Parsec, kiloparsec, Megaparsec
and even Gigaparsec in your lecture classes. These are just shorthand methods of talking
about distances in astronomy. A kiloparsec is 1,000 Parsecs, or 3,260 light years. A Mega-
parsec is one million parsecs, and a Gigaparsec is one billion parsecs. To convert to light
years, you simply have to multiply by 3.26. The Parsec is a strange unit, but you have
already encountered other strange units this semester!

Let’s work some examples. Remember:

• 1 Parsec = 3.26 lightyears

• distance (in Parsecs) = 1
θ
(in arcseconds)

1. If a star has a parallax angle of θ = 0.25”, what is its distance in Parsecs? (1 point)

2. If a star is at a distance of 5 Parsecs, what is its parallax angle? (1 point)

3. If a star is at a distance of 5 Parsecs, how many light years away is it? (1 point)

9.6 Questions

1. How does the parallax angle change as an object is moved further away? Given that
you can usually only measure an angular motion to some accuracy, would it be easier
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to measure the distance to a nearby star or a more distant star? Why? (4 points)

2. Relate the experiment you did in lab to the way parallax is used to measure the
distances to nearby stars in astronomy. Describe the process an astronomer has to go
through in order to determine the distance to a star using the parallax method. What
do your two eyes represent in that experiment? (5 points)

3. Imagine that you did the classroom experiment by putting the object all the way at the
front of the room (against the ruler). How big would the apparent motion be relative
to the tick marks? What would you infer about the distance to the object? Why do
you think this estimate is incorrect? What can you infer about where the background
objects in a parallax experiment need to be located? (7 points)

4. Imagine that you observe a star field twice one year, separated by six months and
observe the configurations of stars shown in Figure 9.3:

Figure 9.3: Star field seen at two times of year six months apart.

The star marked P appears to move between your two observations because of parallax.
So you can consider the two pictures to be like our lab experiment where the left picture
is what is seen by one eye and the right picture what is seen by the other eye. All
the stars except star P do not appear to change position; they correspond to the
background ruler in our lab experiment. If the angular distance between stars A and
B is 0.5 arcminutes (remember, 60 arcminutes = 1 degree), then how far away would
you estimate that star P is?

(a) Determine the scale: Measure the distance (in cm) between stars A and B. (This
distance corresponds to an angular separation of 0.5 arcminutes)

(b) Measure how much star P moved (in cm)

(c) Convert this measured distance to an angular distance in arcminutes (using the
scale found in part a).

(d) Convert your angular distance from arcminutes to arcseconds (remember, there
are 60 arcseconds in 1 arcminute).
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(e) What is the value of θ? (Recall that θ = α
2
)

(f) Using the parallax equation (d = 1
θ
) find the distance to the star P .

(11 points)
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9.7 Summary (35 points)

Please summarize the important concepts discussed in this lab. Your summary should in-
clude:

• A brief description on the basic principles of parallax and how astronomers can use
parallax to determine the distance to nearby stars

Also think about and answer the following questions:

• Does the parallax method work for all stars we can see in our Galaxy and why?

• Why do you think it is important for astronomers to determine the distances to the
stars which they study?

Use complete sentences, and proofread your summary before handing in the lab.

9.8 Possible Quiz Questions

1) How do astronomers measure distances to stars?
2) How can astronomers measure distances inside the Solar System?
3) What is an Astronomical Unit?
4) What is an arcminute?
5) What is a Parsec?

9.9 Extra Credit (ask your TA for permission before attempting,
5 points )

Use the web to find out about the planned GAIA Mission. What are the goals of GAIA? How
accurately can it measure a parallax? Discuss the units of milliarcseconds (“mas”) and mi-
croarcseconds. How much better is GAIA than the best ground-based parallax measurement
programs?
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10 Building a Comet

During this semester we have explored the surfaces of the Moon, terrestrial planets and other
bodies in the solar system, and found that they often are riddled with craters. In Lab 12
there is a discussion on how these impact craters form. Note that every large body in the
solar system has been bombarded by smaller bodies throughout all of history. In fact, this
is one mechanism by which planets grow in size: they collect smaller bodies that come close
enough to be captured by the planet’s gravity. If a planet or moon has a rocky surface, the
surface can still show the scars of these impact events–even if they occurred many billions
of years ago! On planets with atmospheres, like our Earth, weather can erode these impact
craters away, making them difficult to identify. On planets that are essentially large balls of
gas (the “Jovian” planets), there is no solid surface to record impacts. Many of the smaller
bodies in the solar system, such as the Moon, the planet Mercury, or the satellites of the
Jovian planets, do not have atmospheres, and hence, faithfully record the impact history
of the solar system. Astronomers have found that when the solar system was very young,
there were large numbers of small bodies floating around the solar system impacting the
young planets and their satellites. Over time, the number of small bodies in the solar system
has decreased. Today we will investigate how impact craters form, and examine how they
appear under different lighting conditions. During this lab we will discuss both asteroids
and comets, and you will create your own impact craters as well as construct a “comet”.

• Goals: to discuss asteroids and comets; create impact craters; build a comet and test
its strength and reaction to light

• Materials: A variety of items supplied by your TA

10.1 Asteroids and Comets

There are two main types of objects in the solar system that represent left over material from
its formation: asteroids and comets. In fact, both objects are quite similar, their differences
arise from the fact that comets are formed from material located in the most distant parts
of our solar system, where it is very cold, and thus they have large quantities of frozen water
and other frozen liquids and gases. Asteroids formed closer-in than comets, and are denser,
being made-up of the same types of rocks and minerals as the terrestrial planets (Mercury,
Venus, Earth, and Mars). Asteroids are generally just large rocks, as shown in Fig. 10.1
shown below.

The first asteroid, Ceres, was discovered in 1801 by the Italian astronomer Piazzi. Ceres
is the largest of all asteroids, and has a diameter of 933 km (the Moon has a diameter of
3,476 km). There are now more than 40,000 asteroids that have been discovered, ranging in
size from Ceres, all the way down to large rocks that are just a few hundred meters across.
It has been estimated that there are at least 1 million asteroids in the solar system with
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Figure 10.1: Four large asteroids. Note that these asteroids have craters from the impacts
of even smaller asteroids!

diameters of 1 km or more. Most asteroids are harmless, and spend all of their time in
orbits between those of Mars and Jupiter (the so-called “asteroid belt”, see Figure 10.2).
Some asteroids, however, are in orbits that take them inside that of the Earth, and could

Figure 10.2: The Asteroid Belt.

potentially collide with the Earth, causing a great catastrophe for human life. It is now
believed that the impact of a large asteroid might have been the cause for the extinction
of the dinosaurs when its collision threw up a large cloud of dust that caused the Earth’s
climate to dramatically cool. Several searches are underway to insure that we can identify
future “doomsday” asteroids so that we have a chance to prepare for a collision–as the Earth
will someday be hit by another large asteroid.
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10.2 Comets

Comets represent some of the earliest material left over from the formation of the solar
system, and are therefore of great interest to planetary astronomers. They can also be
beautiful objects to observe in the night sky, unlike their darker and less spectacular cousins,
asteroids. They therefore often capture the attention of the public.

10.3 Composition and Components of a Comet

Comets are composed of ices (water ice and other kinds of ices), gases (carbon dioxide,
carbon monoxide, hydrogen, hydroxyl, oxygen, and so on), and dust particles (carbon and
silicon). The dust particles are smaller than the particles in cigarette smoke. In general, the
model for a comet’s composition is that of a “dirty snowball.” 10.3

Figure 10.3: The main components of a comet.

Comets have several components that vary greatly in composition, size, and brightness.
These components are the following:

• nucleus: made of ice and rock, roughly 5-10 km across

• coma: the “head” of a comet, a large cloud of gas and dust, roughly 100,000 km in
diameter

• gas tail: straight and wispy; gas in the coma becomes ionized by sunlight, and gets
carried away by the solar wind to form a straight blueish “ion” tail. The shape of the
gas tail is influenced by the magnetic field in the solar wind. Gas tails are pointed in
the direction directly opposite the sun, and can extend 108 km.

• dust tail: dust is pushed outward by the pressure of sunlight and forms a long, curving
tail that has a much more uniform appearance than the gas tail. The dust tail is
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pointed in the direction directly opposite the comet’s direction of motion, and can also
extend 108 km from the nucleus.

These various components of a comet are shown in the diagram, above (Fig. 10.3).

10.4 Types of Comets

Comets originate from two primary locations in the solar system. One class of comets, called
the long-period comets, have long orbits around the sun with periods of more than 200
years. Their orbits are random in shape and inclination, with long-period comets entering
the inner solar system from all different directions. These comets are thought to originate in
the Oort cloud, a spherical cloud of icy bodies that extends from ∼20,000 to 150,000 AU
from the Sun. Some of these objects might experience only one close approach to the Sun
and then leave the solar system (and the Sun’s gravitational influence) completely.

In contrast, the short-period comets have periods less than 200 years, and their orbits
are all roughly in the plane of the solar system. Comet Halley has a 76-year period, and
therefore is considered a short-period comet. Comets with orbital periods < 100 years do
not get much beyond Pluto’s orbit at their farthest distance from the Sun. Short-period
comets cannot survive many orbits around the Sun before their ices are all melted away. It
is thought that these comets originate in the Kuiper Belt, a belt of small icy bodies beyond
the large gas giant planets and in the plane of the solar system. Quite a few large Kuiper
Belt objects have now been discovered, including one (Eris) that is about the same size as
Pluto.

Figure 10.4: The Oort cloud.

10.5 The Impacts of Asteroids and Comets

Objects orbiting the Sun in our solar system do so at a variety of speeds that directly
depends on how far they are from the Sun. For example, the Earth’s orbital velocity is 30
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Figure 10.5: The Kuiper belt.

km/s (65,000 mph!). Objects further from the Sun than the Earth move more slowly, objects
closer to the Sun than the Earth move more quickly. Note that asteroids and comets near
the Earth will have space velocities similar to the Earth, but in (mostly) random directions,
thus a collision could occur with a relative speed of impact of nearly 60 km/s! How fast is
this? Note that the highest muzzle velocity of any handheld rifle is 1,220 m/s = 1.2 km/s.
Thus, the impact of any solar system body with another is a true high speed collision that
releases a large amount of energy. For example, an asteroid the size of a football field that
collides with the Earth with a velocity of 30 km/s releases as much energy as one thousand
atomic bombs the size of that dropped on Japan during World War II (the Hiroshima bomb
had a “yield” of 13 kilotons of TNT). Since the equation for kinetic energy (the energy of
motion) is K.E. = 1/2(mv2), the energy scales directly as the mass, and mass goes as the
cube of the radius (mass = density × Volume = density × R3). A moving object with ten
times the radius of another traveling at the same velocity has 1,000 times the kinetic energy.
It is this kinetic energy that is released during a collision.

10.6 Exercise #1: Creating Impact Craters

To create impact craters, we will be dropping steel ball bearings into a container filled with
ordinary baking flour. There are at least two different sizes of balls, there is one that is twice
as massive as the other. You will drop both of these balls from three different heights (0.5
meters, 1 meters, and 2 meters), and then measure the size of the impact crater that they
produce. Then on graph paper, you will plot the size of the impact crater versus the speed
of the impacting ball.

1. Have one member of your lab group take the meter stick, while another takes the
smaller ball bearing.

2. Take the plastic tub that is filled with flour, and place it on the floor.

3. Make sure the flour is uniformly level (shake or comb the flour smooth)

4. Carefully hold the meter stick so that it is just touching the top surface of the flour.
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5. The person with the ball bearing now holds the ball bearing so that it is located exactly
one half meter (50 cm) above the surface of the flour.

6. Drop the ball bearing into the center of the flour-filled tub.

7. Use the magnet to carefully extract the ball bearing from the flour so as to cause the
least disturbance.

8. Carefully measure the diameter of the crater caused by this impact, and place it in the
data table, below.

9. Repeat the experiment for heights of 1 meter and 2 meters using the smaller ball
bearing (note that someone with good balance might have to carefully stand on a chair
to get to a height of two meters!).

10. Now repeat the entire experiment using the larger ball bearing. Record all of the data
in the data table.

Height Crater diameter Crater diameter Impact velocity
(meters) (cm) Ball #1 (cm) Ball #2 (m/s)
0.5
1.0
2.0

Now it is time to fill in that last column: Impact velocity (m/s). How can we determine
the impact velocity? The reason the ball falls in the first place is because of the pull of the
Earth’s gravity. This force pulls objects toward the center of the Earth. In the absence of
the Earth’s atmosphere, an object dropped from a great height above the Earth’s surface
continues to accelerate to higher, and higher velocities as it falls. We call this the “accelera-
tion” of gravity. Just like the accelerator on your car makes your car go faster the more you
push down on it, the force of gravity accelerates bodies downwards (until they collide with
the surface!).

We will not derive the equation here, but we can calculate the velocity of a falling body
in the Earth’s gravitational field from the equation v = (2ay)1/2. In this equation, “y” is
the height above the Earth’s surface (in the case of this lab, it is 0.5, 1, and 2 meters). The
constant “a” is the acceleration of gravity, and equals 9.80 m/s2. The exponent of 1/2 means
that you take the square root of the quantity inside the parentheses. For example, if y = 3
meters, then v = (2 × 9.8 × 3)1/2, or v = (58.8)1/2 = 7.7 m/s.

1. Now plot the data you have just collected on graph paper. Put the impact velocity
on the x axis, and the crater diameter on the y axis. (10 points)
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10.6.1 Impact crater questions

1. Describe your graph, can the three points for each ball be approximated by a single
straight line? How do your results for the larger ball compare to that for the smaller ball? (3
points)

2. If you could drop both balls from a height of 4 meters, how big would their craters
be? (2 points)

3. What is happening here? How does the mass/size of the impacting body effect your
results. How does the speed of the impacting body effect your results? What have you just
proven? (5 points)

10.7 Crater Illumination

Now, after your TA has dimmed the room lights, have someone take the flashlight out and
turn it on. If you still have a crater in your tub, great, if not create one (any height more
than 1 meter is fine). Extract the ball bearing.

1. Now, shine the flashlight on the crater from straight over top of the crater. Describe
what you see. (2 points)

2. Now, hold the flashlight so that it is just barely above the lip of the tub, so that the
light shines at a very oblique angle (like that of the setting Sun!). Now, what do you see? (2
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points)

3. When is the best time to see fine surface detail on a cratered body, when it is noon
(the Sun is almost straight overhead), or when it is near “sunset”? [Confirm this at the
observatory sometime this semester!] (1 point)

10.8 Exercise #2: Building a Comet

In this portion of the lab, you will actually build a comet out of household materials. These
include water, ammonia, potting soil, and dry ice (CO2 ice). Be sure to distribute the work
evenly among all members of your group. Follow these directions: (10 points)

1. Use a freezer bag to line the bottom of your bucket.

2. Place a little less than 1 cup of water (this is a little less than 1/2 of a “Solo” cup!) in
the bag/bucket.

3. Add 3 spoonfuls of sand, stirring well. (NOTE: Do not stir so hard that you rip the
freezer bag lining!!)

4. Add 1 capful of ammonia.

5. Add 1 spoon of organic material (potting soil). Stir until well-mixed.

6. Your TA will place a block or chunk of dry ice inside a towel and crush the block with
the mallet and give you some crushed dry ice.

7. Add about 1 cup of crushed dry ice to the bucket, while stirring vigorously. (NOTE:
Do not stir so hard that you rip the freezer bag!!)

8. Continue stirring until mixture is almost frozen.

9. Lift the comet out of the bucket using the plastic liner and shape it for a few seconds
as if you were building a snowball (use gloves!).

10. If not a solid mass, add small amounts of water and keep working the “snowball” until
the mixture is completely frozen.
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11. Unwrap the comet once it is frozen enough to hold its shape.

10.8.1 Comets and Light

1. Observe the comet as it is sitting on a desk. Make some notes about its physical char-
acteristics, for example: shape, color, smell (5 points):

2. Now bring the comet over to the light source (overhead projector) and place it on top.
Observe, and then describe what happens to the comet (5 points):

10.8.2 Comet Strength

Comets, like all objects in the solar system, are held together by their internal strength.
If they pass too close to a large body, such as Jupiter, their internal strength is not large
enough to compete with the powerful gravity of the massive body. In such encounters, a
comet can be broken apart into smaller pieces. In 1994, we saw evidence of this when Comet
Shoemaker-Levy/9 impacted into Jupiter. In 1992, that comet passed very close to Jupiter
and was fragmented into pieces. Two years later, more than 21 cometary fragments crashed
into Jupiter’s atmosphere, creating spectacular (but temporary) “scars” on Jupiter’s cloud
deck.

Exercise: After everyone in your group has carefully examined your comet (make sure
to note its appearance, shape, smell, weight), it is time to say goodbye. Take a sample rock
and your comet, go outside, and drop them both on the sidewalk. What happened to each
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Figure 10.6: The Impact of “Fragment K” of Comet Shoemaker-Levy/9 with Jupiter. Note
the dark spots where earlier impacts occurred.

object? (2 points)

10.8.3 Comet Questions

1. Draw a comet and label all of its components. Be sure to indicate the direction the
Sun is in, and the comet’s direction of motion. (5 points)

2. What are some differences between long-period and short-period comets? Does it make
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sense that they are two distinct classes of objects? Why or why not? (5 points)

3. If a comet is far away from the Sun and then it draws nearer as it orbits the Sun, what
would you expect to happen? (5 points)

4. Do you think comets have more or less internal strength than asteroids, which are
composed primarily of rock? [Hint: If you are playing outside with your friends in a
snow storm, would you rather be hit with a snowball or a rock?] (3 points)
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10.9 Take Home Exercise (35 points total)

Write-up a summary of the important ideas covered in this lab. Questions you may want to
consider are:

• How does the mass of an impacting asteroid or comet affect the size of an impact
crater?

• How does the speed of an impacting asteroid or comet affect the size of an impact
crater?

• Why are comets important to planetary astronomers?

• What can they tell us about the solar system?

• What are some components of comets and how are they affected by the Sun?

• How are comets different from asteroids?

Use complete sentences, and proofread your summary before handing it in.

10.10 Possible Quiz Questions

1. What is the main difference between comets and asteroids, and why are they different?

2. What is the Oort cloud and the Kuiper belt?

3. What happens when a comet or asteroid collides with the Moon?

4. How does weather effect impact features on the Earth?

5. How does the speed of the impacting body effect the energy of the collision?

10.11 Extra Credit (ask your TA for permission before attempt-
ing, 5 points)

On the 15th of February, 2013, a huge meteorite exploded in the skies over Chelyabinsk,
Russia. Write-up a small report about this event, including what might have happened if
instead of a grazing, or “shallow”, entry into our atmosphere, the meteor had plowed straight
down to the surface.
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11 Kepler’s Laws

11.1 Introduction

Throughout human history, the motion of the planets in the sky was a mystery: why did
some planets move quickly across the sky, while other planets moved very slowly? Even two
thousand years ago it was apparent that the motion of the planets was very complex. For
example, Mercury and Venus never strayed very far from the Sun, while the Sun, the Moon,
Mars, Jupiter and Saturn generally moved from the west to the east against the background
stars (at this point in history, both the Moon and the Sun were considered “planets”). The
Sun appeared to take one year to go around the Earth, while the Moon only took about 30
days. The other planets moved much more slowly. In addition to this rather slow movement
against the background stars was, of course, the daily rising and setting of these objects.
How could all of these motions occur? Because these objects were important to the cultures
of the time. Being able to predict their motion was considered vital.

The ancient Greeks had developed a model for the Universe in which all of the planets
and the stars were embedded in perfect crystalline spheres that revolved around the Earth
at uniform, but slightly different speeds. This is the “geocentric”, or Earth-centered model.
But this model did not work very well, the speed of the planet across the sky changed.
Sometimes, a planet even moved backwards! The Egyptian astronomer Ptolemy (85 − 165
AD) finally came up with a model for the motion of the planets that accounted for some of
challenges. Ptolemy developed a complicated system to explain the motion of the planets,
including “epicycles” and “equants”, that in the end worked reasonably well, and no other
models for the motions of the planets were considered for 1500 years! While Ptolemy’s model
worked well, the philosophers of the time did not like this model, their Universe was perfect,
and Ptolemy’s model suggested that the planets moved in peculiar, imperfect ways.

In the 1540’s Nicholas Copernicus (1473 − 1543) published his work suggesting that
it was much easier to explain the complicated motion of the planets if the Earth revolved
around the Sun, and that the orbits of the planets were circular. While Copernicus was not
the first person to suggest this idea, the timing of his publication coincided with attempts to
revise the calendar and to fix a large number of errors in Ptolemy’s model that had shown
up over the 1500 years since the model was first introduced. But the “heliocentric” (Sun-
centered) model of Copernicus was slow to win acceptance, since it did not work as well as
the geocentric model of Ptolemy.

Johannes Kepler (1571 − 1630) was the first person to truly understand how the planets
in our solar system moved. Using the highly precise observations by Tycho Brahe (1546
− 1601) of the motions of the planets against the background stars, Kepler was able to
formulate three laws that described how the planets moved. With these laws, he was able to
predict the future motion of these planets to a higher precision than was previously possible.
Many credit Kepler with the origin of modern physics, as his discoveries were what led Isaac
Newton (1643 − 1727) to formulate the law of gravity. Today we will investigate Kepler’s
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laws.

11.2 Gravity

Gravity is the fundamental force governing the motions of astronomical objects. No other
force is as strong over as great a distance. Gravity influences your everyday life (ever drop
a glass?), and keeps the planets, moons, and satellites orbiting smoothly. Gravity affects
everything in the Universe including the largest structures like super clusters of galaxies
down to the smallest atoms and molecules.

Experimenting with gravity is difficult to do. You can’t just go around in space making
extremely massive objects and throwing them together from great distances. But you can
model a variety of interesting systems very easily using a computer. By using a computer to
model the interactions of massive objects like planets, stars and galaxies, we can study what
would happen in just about any situation. All we have to know are the equations which
predict the gravitational interactions of the objects.

The orbits of the planets are governed by a single equation formulated by Newton:

Fgravity =
GM1M2

R2
(1)

A diagram detailing the quantities in this equation is shown in Fig. 11.1. Here Fgravity
is the gravitational attractive force between two objects whose masses are M1 and M2. The
distance between the two objects is “R”. The gravitational constant G is just a small number
that scales the size of the force. The most important thing about gravity is that the
force depends only on the masses of the two objects and the distance between
them. This law is called an Inverse Square Law because the distance between the objects is
squared, and is in the denominator of the fraction. There are several laws like this in physics
and astronomy.

Figure 11.1: The force of gravity depends on the masses of the two objects (M1, M2), and
the distance between them (R).

11.3 Kepler’s Laws

Before you begin the lab, let’s state Kepler’s three laws, the basic description of how the
planets in our Solar System move. Kepler formulated his three laws in the early 1600’s,
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when he finally solved the mystery of how planets moved in our Solar System. These three
(empirical) laws are:

I. The orbits of the planets are ellipses with the Sun at one focus.

II. A line from the planet to the Sun sweeps out equal areas in equal intervals
of time.

III. A planet’s orbital period squared is proportional to its average distance
from the Sun cubed: P2 ∝ a3

In this lab, we will investigate these laws to develop your understanding of them.
Let’s look at the first law, and talk about the nature of an ellipse. What is an ellipse?

An ellipse is one of the special curves called a “conic section”. If we slice a plane through a
cone, four different types of curves can be made: circles, ellipses, parabolas, and hyperbolas.
This process, and how these curves are created is shown in Fig. 11.2.

Figure 11.2: Four types of curves can be generated by slicing a cone with a plane: a circle,
an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed
shapes of the orbits of planets, asteroids, comets and satellites!

Before we describe an ellipse, let’s examine a circle, as it is a simple form of an ellipse.
As you are aware, the circumference of a circle is simply 2πR. The radius, R, is the distance
between the center of the circle and any point on the circle itself. In mathematical terms,
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Figure 11.3: An ellipse with the major and minor axes identified.

the center of the circle is called the “focus”. An ellipse, as shown in Fig. 11.3, is like a
flattened circle, with one large diameter (the “major” axis) and one small diameter (the
“minor” axis). A circle is simply an ellipse that has identical major and minor axes. Inside
of an ellipse, there are two special locations, called “foci” (foci is the plural of focus, it is
pronounced “fo-sigh”). The foci are special in that the sum of the distances between the
foci and any points on the ellipse are always equal. Fig. 11.4 is an ellipse with the two foci
identified, “F1” and “F2”.

Exercise #1: On the ellipse in Fig. 11.4 are two X’s. Confirm that that sum of the
distances between the two foci to any point on the ellipse is always the same by measuring
the distances between the foci, and the two spots identified with X’s. Show your work. (3
points)

Figure 11.4: An ellipse with the two foci identified.
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Exercise #2: In the ellipse shown in Fig. 11.5, two points (“P1” and “P2”) are identified
that are not located at the true positions of the foci. Repeat exercise #1, but confirm that
P1 and P2 are not the foci of this ellipse. (3 points)

Figure 11.5: An ellipse with two non-foci points identified.

We will now use various online simulators to explore Kepler’s Laws of planetary motion

11.4 Simulator

We will be using the NAAP simulators which are located here:
https://astro.unl.edu/naap/pos/animations/kepler.html

11.5 Kepler’s 1st Law

If you have not already done so, launch the NAAP Planetary Orbit Simulator.

• Open the Kepler;s 1st Law tab if it is not already (it‘s open by default).

• Enable all 5 check boxes.

• The white dot is the simulated planet. One can click on it and drag it around.

• Change the size of the orbit with the semimajor axis slider. Note how the background
grid indicates change in scale while the displayed orbit size remains the same.

• Change the eccentricity and note how it affects the shape of the orbit.
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Tip: You can change the value of a slider by clicking on the slider bar or by entering a
number in the value box.

Be aware that the ranges of several parameters are limited by practical issues that occur
when creating a simulator rather than any true physical limitations. The simulator limits
the semi-major axis to 50 AU since that covers most of the objects in which we are interested
in our solar system and have limited eccentricity to 0.7 since the ellipses would be hard to fit
on the screen for larger values. Note also that the semi-major axis is aligned horizontally for
all elliptical orbits created in this simulator, where they are randomly aligned in our solar
system.

• Animate the simulated planet. You may need to increase the animation rate for very
large orbits or decrease it for small ones.

• The planetary presets set the simulated planet’s parameters to those like our solar
system’s planets. Explore these options.

We will now be using this simulator to answer some questions on Kepler’s 1st law.

1. For what eccentricity is the secondary focus (which is usually empty) located at the
sun? What is the shape of this orbit? (2 points)

2. Create an orbit with a = 20 AU and e = 0. Drag the planet first to the far left of the
ellipse and then to the far right. What are the values of r1 and r2 at these locations?
(2 points)

r1 (AU) r2 (AU)
Far Left
Far Right

3. Create an orbit with a = 20 AU and e = 0.5. Drag the planet first to the far left of the
ellipse and then to the far right. What are the values of r1 and r2 at these locations?
(2 points)

r1 (AU) r2 (AU)
Far Left
Far Right
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4. What is the value of the sum of r1 and r2 and how does it relate to the ellipse properties?
Is this true for all ellipses? (3 points)

5. It is easy to create an ellipse using a loop of string and two thumbtacks. The string is
first stretched over the thumbtacks which act as foci. The string is then pulled tight
using the pencil which can then trace out the ellipse. Assume that you wish to draw
an ellipse with a semi-major axis of a = 20 cm and an eccentricity of e = 0.5. How
long would your string need to be? (Hint: think about the case where e = 0, i.e., a
circle). Given that the eccentricity of an ellipse is c/a, where c is the distance of each
focus from the center of the ellipse, how far apart would the thumbtacks (at the focii)
need to be? (4 points)

11.6 Kepler’s 2nd Law

• Use the ‘clear optional features’ button to remove the 1st Law features.

• Open the Kepler’s 2nd Law tab.

• Press the ‘start sweeping’ button. Adjust the semimajor axis and animation rate so
that the planet moves at a reasonable speed.

• Adjust the size of the sweep using the ‘adjust size’ slider.

• Click and drag the sweep segment around. Note how the shape of the sweep segment
changes, but the area does not.

• Add more sweeps. Erase all sweeps with the ‘erase sweeps’ button.

• The ‘sweep continuously’ check box will cause sweeps to be created continuously when
sweeping. Test this option.

1. Erase all sweeps and create an ellipse with a = 1 AU and e = 0. Set the fractional
sweep size to one-twelfth of the period. Drag the sweep segment around. Does its size
or shape change? (2 points)

2. Leave the semi-major axis at a = 1 AU and change the eccentricity to e = 0.5. Drag
the sweep segment around and note that its size and shape change. Where is the
sweep segment the widest? Where is it the narrowest? Where is the planet when it
is sweeping out each of these segments? What names do astronomers use for these
positions? (4 points)
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3. What eccentricity in the simulator gives the greatest variation of sweep segment shape?
2 points)

4. Halley’s comet has a semimajor axis of about 18.5 AU, a period of 76 years, and an
eccentricity of about 0.97 (so Halley’s orbit cannot be shown in this simulator.) The
orbit of Halley’s Comet, the Earth’s Orbit, and the Sun are shown in the diagram
below (not exactly to scale). Based upon what you know about Kepler’s 2nd Law,
explain why we can only see the comet for about 6 months every orbit (76 years)? (4
points)

11.7 Kepler’s 3rd Law

Kepler’s third law is:
Here is an example of how use this equation to make some predictions. If the average

distance of Jupiter from the Sun is about 5 AU, what is its orbital period? Set-up the
equation:

P (Jupiter)2 = a(Jupiter)3 = 53 = 5× 5× 5 = 125 (2)

So, for Jupiter, P 2 = 125. How do we figure out what P is? We have to take the square
root of both sides of the equation, which you can easily do with a calculator.

√
P 2 = P =

√
125 = 11.2 years (3)

The orbital period of Jupiter is approximately 11.2 years.
Similarly, if you are given the period of an orbit, you can find the semimajor axis: just

take the square of the period, and then you have to take the cube root of that number:

a3 = P 2 (4)

a =
3
√
P 2 (5)

You should also be able to do cube roots on your calculator.
Let’s investigate Kepler’s third law using the simulator.

• Use the ‘clear optional features’ button to remove the 2nd Law features.
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• Open the Kepler’s 3rd Law tab.

1. Use the simulator to complete the table below. (7 points)

Object P(years) a (AU) e P2 a3

Earth 1.00
Mars 1.52
Ceres 2.77 0.08
Chiron 50.7 0.38

2. As the size of a planet’s orbit increases, what happens to its period? (2 points)

3. Start with the Earth’s orbit and change the eccentricity to 0.6. Does changing the
eccentricity change the period of the planet? (2 point)

4. Kepler’s third law is P 2 = a3 where P is measured in years, and a is measured in
astronomical units. Using this relation, what would the period of an object be if it was
an in orbit with a semi-major axis of 4 AU? Show your work. (3 points)

5. What would the orbital semimajor axis be for an object that had an orbital period of
10 years? (3 points)

If one used units other than years for the period and AU for the semimajor axis, there
would be some other numbers in the equation for Kepler’s third law, but the basic relation
between the square of the period (P 2) and the semimajor axies (a3) would still be the same.
For example, say we measured the semimajor axis in kilometers (km) instead of in AU. We
can do a unit conversion (remember those from earlier labs?). Since 1 AU = 1.496×108 km,
we have:

P 2
years = a3AU =

(
akm

1AU

1.496× 108km

)3

= 2.99× 10−25a3km (6)

You would get some different number if you used some different units for either the period
or the semimajor axis, but you would always see a P 2 on the left side and an a3 on the right.
For this reason, scientist often represent the fundamentally important part of the relation
as a proportionality rather than as an equality, in other words, they would say that P 2 is
proportional to a3, which is a statement that is true independent of the units used. This is
often written as:

P 2 ∝ a3 (7)
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If you take the square root of both sides, this becomes:

P ∝ a3/2 = a1.5 (8)

Using proportionalities often makes calculations easier, because you can use ratios of
quantities from different objects. For example, if someone says that the semimajor axis of
some object is twice that of Jupiter, you can tell them what the period of that object is
relative to the period of Jupiter:(

P (object)

P (Jupiter)

)
=

(
a(object)

a(Jupiter)

)1.5

= 21.5 = 2.82 times the period of Jupiter (9)

without ever needing to know what the semimajor axis or the period of Jupiter is at all!

1. The proportionality part of Kepler’s third law holds for all orbiting objects, although
the equality does not. Imagine we discovered another system of planets around another
star, and found that a planet located at 1 AU from the star took 2 years to go around
(this would happen if the star was less massive than our Sun). How long would it take
a planet that was located at 4 AU from that star to orbit the star? Use equation 9
and explain your reasoning. (5 points)

11.8 Take Home Exercise (35 points total):

On a clean sheet of paper, please summarize the important concepts of this lab. Use complete
sentences, and proofread your summary before handing in the lab. Your response should
include:

• Describe the Law of Gravity and what happens to the gravitational force as a) as the
masses increase, and b) the distance between the two objects increases

• Describe Kepler’s three laws in your own words, and describe how you tested each one
of them.

• Mention some of the things which you have learned from this lab

• Astronomers think that finding life on planets in binary systems is unlikely. Why do
they think that? Use your simulation results to strengthen your argument.

11.9 Possible Quiz Questions

1. Describe the difference between an ellipse and a circle.

2. List Kepler’s three laws.

3. How quickly does the strength (“pull”) of gravity get weaker with distance?

4. Describe the major and minor axes of an ellipse.
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12 Appendix A: Algebra Review

Because this is a freshman laboratory, we do not use high-level mathematics. But we do
sometimes encounter a little basic algebra and we need to briefly review the main concepts.
Algebra deals with equations and “unknowns”. Unknowns, or “variables”, are usually rep-
resented as a letter in an equation: y = 3x + 7. In this equation both “x” and “y” are
variables. You do not know what the value of y is until you assign a value to x. For example,
if x = 2, then y = 13 (y = 3×2 + 7 = 13). Here are some additional examples:

y = 5x + 3, if x=1, what is y? Answer: y = 5×1 + 3 = 5 + 3 = 8

q = 3t + 9, if t=5, what is q? Answer: q = 3×5 + 9 = 15 + 9 = 24

y = 5x2 + 3, if x=2, what is y? Answer: y = 5×(22) + 3 = 5×4 + 3 = 20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

12.1 Solving for X

These problems were probably easy for you, but what happens when you have this equation:
y = 7x + 14, and you are asked to figure out what x is if y = 21? Let’s do this step by step,
first we re-write the equation:

y = 7x + 14

We now substitute the value of y (y = 21) into the equation:

21 = 7x + 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from both
sides of the equation:

21 − 14 = 7x + 14 − 14 (this gets rid of that pesky 14!)

7 = 7x (divide both sides by 7)

x = 1

Ok, your turn: If you have the equation y = 4x + 16, and y = 8, what is x?
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We frequently encounter more complicated equations, such as y= 3x2 + 2x − 345, or p2 =
a3. There are ways to solve such equations, but that is beyond the scope of our introduction.
However, you do need to be able to solve equations like this: y2 = 3x + 3 (if you are told
what “x” is!). Let’s do this for x = 11:

Copy down the equation again:

y2 = 3x + 3

Substitute x = 11:

y2 = 3×11 + 3 = 33 + 3 = 36

Take the square root of both sides:

(y2)1/2 = (36)1/2

y = 6

Did that make sense? To get rid of the square of a variable you have to take the square
root: (y2)1/2 = y. So to solve for y2, we took the square root of both sides of the equation.
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13 Observatory Worksheets
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